1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <trace/events/power.h> 26 #include <linux/hw_breakpoint.h> 27 #include <asm/cpu.h> 28 #include <asm/apic.h> 29 #include <asm/syscalls.h> 30 #include <linux/uaccess.h> 31 #include <asm/mwait.h> 32 #include <asm/fpu/internal.h> 33 #include <asm/debugreg.h> 34 #include <asm/nmi.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mce.h> 37 #include <asm/vm86.h> 38 #include <asm/switch_to.h> 39 #include <asm/desc.h> 40 #include <asm/prctl.h> 41 42 /* 43 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 44 * no more per-task TSS's. The TSS size is kept cacheline-aligned 45 * so they are allowed to end up in the .data..cacheline_aligned 46 * section. Since TSS's are completely CPU-local, we want them 47 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 48 */ 49 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 50 .x86_tss = { 51 /* 52 * .sp0 is only used when entering ring 0 from a lower 53 * privilege level. Since the init task never runs anything 54 * but ring 0 code, there is no need for a valid value here. 55 * Poison it. 56 */ 57 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 58 59 #ifdef CONFIG_X86_64 60 /* 61 * .sp1 is cpu_current_top_of_stack. The init task never 62 * runs user code, but cpu_current_top_of_stack should still 63 * be well defined before the first context switch. 64 */ 65 .sp1 = TOP_OF_INIT_STACK, 66 #endif 67 68 #ifdef CONFIG_X86_32 69 .ss0 = __KERNEL_DS, 70 .ss1 = __KERNEL_CS, 71 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, 72 #endif 73 }, 74 #ifdef CONFIG_X86_32 75 /* 76 * Note that the .io_bitmap member must be extra-big. This is because 77 * the CPU will access an additional byte beyond the end of the IO 78 * permission bitmap. The extra byte must be all 1 bits, and must 79 * be within the limit. 80 */ 81 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, 82 #endif 83 }; 84 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 85 86 DEFINE_PER_CPU(bool, __tss_limit_invalid); 87 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 88 89 /* 90 * this gets called so that we can store lazy state into memory and copy the 91 * current task into the new thread. 92 */ 93 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 94 { 95 memcpy(dst, src, arch_task_struct_size); 96 #ifdef CONFIG_VM86 97 dst->thread.vm86 = NULL; 98 #endif 99 100 return fpu__copy(&dst->thread.fpu, &src->thread.fpu); 101 } 102 103 /* 104 * Free current thread data structures etc.. 105 */ 106 void exit_thread(struct task_struct *tsk) 107 { 108 struct thread_struct *t = &tsk->thread; 109 unsigned long *bp = t->io_bitmap_ptr; 110 struct fpu *fpu = &t->fpu; 111 112 if (bp) { 113 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu()); 114 115 t->io_bitmap_ptr = NULL; 116 clear_thread_flag(TIF_IO_BITMAP); 117 /* 118 * Careful, clear this in the TSS too: 119 */ 120 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 121 t->io_bitmap_max = 0; 122 put_cpu(); 123 kfree(bp); 124 } 125 126 free_vm86(t); 127 128 fpu__drop(fpu); 129 } 130 131 void flush_thread(void) 132 { 133 struct task_struct *tsk = current; 134 135 flush_ptrace_hw_breakpoint(tsk); 136 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 137 138 fpu__clear(&tsk->thread.fpu); 139 } 140 141 void disable_TSC(void) 142 { 143 preempt_disable(); 144 if (!test_and_set_thread_flag(TIF_NOTSC)) 145 /* 146 * Must flip the CPU state synchronously with 147 * TIF_NOTSC in the current running context. 148 */ 149 cr4_set_bits(X86_CR4_TSD); 150 preempt_enable(); 151 } 152 153 static void enable_TSC(void) 154 { 155 preempt_disable(); 156 if (test_and_clear_thread_flag(TIF_NOTSC)) 157 /* 158 * Must flip the CPU state synchronously with 159 * TIF_NOTSC in the current running context. 160 */ 161 cr4_clear_bits(X86_CR4_TSD); 162 preempt_enable(); 163 } 164 165 int get_tsc_mode(unsigned long adr) 166 { 167 unsigned int val; 168 169 if (test_thread_flag(TIF_NOTSC)) 170 val = PR_TSC_SIGSEGV; 171 else 172 val = PR_TSC_ENABLE; 173 174 return put_user(val, (unsigned int __user *)adr); 175 } 176 177 int set_tsc_mode(unsigned int val) 178 { 179 if (val == PR_TSC_SIGSEGV) 180 disable_TSC(); 181 else if (val == PR_TSC_ENABLE) 182 enable_TSC(); 183 else 184 return -EINVAL; 185 186 return 0; 187 } 188 189 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 190 191 static void set_cpuid_faulting(bool on) 192 { 193 u64 msrval; 194 195 msrval = this_cpu_read(msr_misc_features_shadow); 196 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 197 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 198 this_cpu_write(msr_misc_features_shadow, msrval); 199 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 200 } 201 202 static void disable_cpuid(void) 203 { 204 preempt_disable(); 205 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 206 /* 207 * Must flip the CPU state synchronously with 208 * TIF_NOCPUID in the current running context. 209 */ 210 set_cpuid_faulting(true); 211 } 212 preempt_enable(); 213 } 214 215 static void enable_cpuid(void) 216 { 217 preempt_disable(); 218 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 219 /* 220 * Must flip the CPU state synchronously with 221 * TIF_NOCPUID in the current running context. 222 */ 223 set_cpuid_faulting(false); 224 } 225 preempt_enable(); 226 } 227 228 static int get_cpuid_mode(void) 229 { 230 return !test_thread_flag(TIF_NOCPUID); 231 } 232 233 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 234 { 235 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT)) 236 return -ENODEV; 237 238 if (cpuid_enabled) 239 enable_cpuid(); 240 else 241 disable_cpuid(); 242 243 return 0; 244 } 245 246 /* 247 * Called immediately after a successful exec. 248 */ 249 void arch_setup_new_exec(void) 250 { 251 /* If cpuid was previously disabled for this task, re-enable it. */ 252 if (test_thread_flag(TIF_NOCPUID)) 253 enable_cpuid(); 254 } 255 256 static inline void switch_to_bitmap(struct tss_struct *tss, 257 struct thread_struct *prev, 258 struct thread_struct *next, 259 unsigned long tifp, unsigned long tifn) 260 { 261 if (tifn & _TIF_IO_BITMAP) { 262 /* 263 * Copy the relevant range of the IO bitmap. 264 * Normally this is 128 bytes or less: 265 */ 266 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 267 max(prev->io_bitmap_max, next->io_bitmap_max)); 268 /* 269 * Make sure that the TSS limit is correct for the CPU 270 * to notice the IO bitmap. 271 */ 272 refresh_tss_limit(); 273 } else if (tifp & _TIF_IO_BITMAP) { 274 /* 275 * Clear any possible leftover bits: 276 */ 277 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 278 } 279 } 280 281 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 282 struct tss_struct *tss) 283 { 284 struct thread_struct *prev, *next; 285 unsigned long tifp, tifn; 286 287 prev = &prev_p->thread; 288 next = &next_p->thread; 289 290 tifn = READ_ONCE(task_thread_info(next_p)->flags); 291 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 292 switch_to_bitmap(tss, prev, next, tifp, tifn); 293 294 propagate_user_return_notify(prev_p, next_p); 295 296 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 297 arch_has_block_step()) { 298 unsigned long debugctl, msk; 299 300 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 301 debugctl &= ~DEBUGCTLMSR_BTF; 302 msk = tifn & _TIF_BLOCKSTEP; 303 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 304 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 305 } 306 307 if ((tifp ^ tifn) & _TIF_NOTSC) 308 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 309 310 if ((tifp ^ tifn) & _TIF_NOCPUID) 311 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 312 } 313 314 /* 315 * Idle related variables and functions 316 */ 317 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 318 EXPORT_SYMBOL(boot_option_idle_override); 319 320 static void (*x86_idle)(void); 321 322 #ifndef CONFIG_SMP 323 static inline void play_dead(void) 324 { 325 BUG(); 326 } 327 #endif 328 329 void arch_cpu_idle_enter(void) 330 { 331 tsc_verify_tsc_adjust(false); 332 local_touch_nmi(); 333 } 334 335 void arch_cpu_idle_dead(void) 336 { 337 play_dead(); 338 } 339 340 /* 341 * Called from the generic idle code. 342 */ 343 void arch_cpu_idle(void) 344 { 345 x86_idle(); 346 } 347 348 /* 349 * We use this if we don't have any better idle routine.. 350 */ 351 void __cpuidle default_idle(void) 352 { 353 trace_cpu_idle_rcuidle(1, smp_processor_id()); 354 safe_halt(); 355 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 356 } 357 #ifdef CONFIG_APM_MODULE 358 EXPORT_SYMBOL(default_idle); 359 #endif 360 361 #ifdef CONFIG_XEN 362 bool xen_set_default_idle(void) 363 { 364 bool ret = !!x86_idle; 365 366 x86_idle = default_idle; 367 368 return ret; 369 } 370 #endif 371 372 void stop_this_cpu(void *dummy) 373 { 374 local_irq_disable(); 375 /* 376 * Remove this CPU: 377 */ 378 set_cpu_online(smp_processor_id(), false); 379 disable_local_APIC(); 380 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 381 382 /* 383 * Use wbinvd on processors that support SME. This provides support 384 * for performing a successful kexec when going from SME inactive 385 * to SME active (or vice-versa). The cache must be cleared so that 386 * if there are entries with the same physical address, both with and 387 * without the encryption bit, they don't race each other when flushed 388 * and potentially end up with the wrong entry being committed to 389 * memory. 390 */ 391 if (boot_cpu_has(X86_FEATURE_SME)) 392 native_wbinvd(); 393 for (;;) { 394 /* 395 * Use native_halt() so that memory contents don't change 396 * (stack usage and variables) after possibly issuing the 397 * native_wbinvd() above. 398 */ 399 native_halt(); 400 } 401 } 402 403 /* 404 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 405 * states (local apic timer and TSC stop). 406 */ 407 static void amd_e400_idle(void) 408 { 409 /* 410 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 411 * gets set after static_cpu_has() places have been converted via 412 * alternatives. 413 */ 414 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 415 default_idle(); 416 return; 417 } 418 419 tick_broadcast_enter(); 420 421 default_idle(); 422 423 /* 424 * The switch back from broadcast mode needs to be called with 425 * interrupts disabled. 426 */ 427 local_irq_disable(); 428 tick_broadcast_exit(); 429 local_irq_enable(); 430 } 431 432 /* 433 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 434 * We can't rely on cpuidle installing MWAIT, because it will not load 435 * on systems that support only C1 -- so the boot default must be MWAIT. 436 * 437 * Some AMD machines are the opposite, they depend on using HALT. 438 * 439 * So for default C1, which is used during boot until cpuidle loads, 440 * use MWAIT-C1 on Intel HW that has it, else use HALT. 441 */ 442 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 443 { 444 if (c->x86_vendor != X86_VENDOR_INTEL) 445 return 0; 446 447 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) 448 return 0; 449 450 return 1; 451 } 452 453 /* 454 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 455 * with interrupts enabled and no flags, which is backwards compatible with the 456 * original MWAIT implementation. 457 */ 458 static __cpuidle void mwait_idle(void) 459 { 460 if (!current_set_polling_and_test()) { 461 trace_cpu_idle_rcuidle(1, smp_processor_id()); 462 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 463 mb(); /* quirk */ 464 clflush((void *)¤t_thread_info()->flags); 465 mb(); /* quirk */ 466 } 467 468 __monitor((void *)¤t_thread_info()->flags, 0, 0); 469 if (!need_resched()) 470 __sti_mwait(0, 0); 471 else 472 local_irq_enable(); 473 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); 474 } else { 475 local_irq_enable(); 476 } 477 __current_clr_polling(); 478 } 479 480 void select_idle_routine(const struct cpuinfo_x86 *c) 481 { 482 #ifdef CONFIG_SMP 483 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 484 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 485 #endif 486 if (x86_idle || boot_option_idle_override == IDLE_POLL) 487 return; 488 489 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 490 pr_info("using AMD E400 aware idle routine\n"); 491 x86_idle = amd_e400_idle; 492 } else if (prefer_mwait_c1_over_halt(c)) { 493 pr_info("using mwait in idle threads\n"); 494 x86_idle = mwait_idle; 495 } else 496 x86_idle = default_idle; 497 } 498 499 void amd_e400_c1e_apic_setup(void) 500 { 501 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 502 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 503 local_irq_disable(); 504 tick_broadcast_force(); 505 local_irq_enable(); 506 } 507 } 508 509 void __init arch_post_acpi_subsys_init(void) 510 { 511 u32 lo, hi; 512 513 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 514 return; 515 516 /* 517 * AMD E400 detection needs to happen after ACPI has been enabled. If 518 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 519 * MSR_K8_INT_PENDING_MSG. 520 */ 521 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 522 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 523 return; 524 525 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 526 527 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 528 mark_tsc_unstable("TSC halt in AMD C1E"); 529 pr_info("System has AMD C1E enabled\n"); 530 } 531 532 static int __init idle_setup(char *str) 533 { 534 if (!str) 535 return -EINVAL; 536 537 if (!strcmp(str, "poll")) { 538 pr_info("using polling idle threads\n"); 539 boot_option_idle_override = IDLE_POLL; 540 cpu_idle_poll_ctrl(true); 541 } else if (!strcmp(str, "halt")) { 542 /* 543 * When the boot option of idle=halt is added, halt is 544 * forced to be used for CPU idle. In such case CPU C2/C3 545 * won't be used again. 546 * To continue to load the CPU idle driver, don't touch 547 * the boot_option_idle_override. 548 */ 549 x86_idle = default_idle; 550 boot_option_idle_override = IDLE_HALT; 551 } else if (!strcmp(str, "nomwait")) { 552 /* 553 * If the boot option of "idle=nomwait" is added, 554 * it means that mwait will be disabled for CPU C2/C3 555 * states. In such case it won't touch the variable 556 * of boot_option_idle_override. 557 */ 558 boot_option_idle_override = IDLE_NOMWAIT; 559 } else 560 return -1; 561 562 return 0; 563 } 564 early_param("idle", idle_setup); 565 566 unsigned long arch_align_stack(unsigned long sp) 567 { 568 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 569 sp -= get_random_int() % 8192; 570 return sp & ~0xf; 571 } 572 573 unsigned long arch_randomize_brk(struct mm_struct *mm) 574 { 575 return randomize_page(mm->brk, 0x02000000); 576 } 577 578 /* 579 * Called from fs/proc with a reference on @p to find the function 580 * which called into schedule(). This needs to be done carefully 581 * because the task might wake up and we might look at a stack 582 * changing under us. 583 */ 584 unsigned long get_wchan(struct task_struct *p) 585 { 586 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 587 int count = 0; 588 589 if (!p || p == current || p->state == TASK_RUNNING) 590 return 0; 591 592 if (!try_get_task_stack(p)) 593 return 0; 594 595 start = (unsigned long)task_stack_page(p); 596 if (!start) 597 goto out; 598 599 /* 600 * Layout of the stack page: 601 * 602 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 603 * PADDING 604 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 605 * stack 606 * ----------- bottom = start 607 * 608 * The tasks stack pointer points at the location where the 609 * framepointer is stored. The data on the stack is: 610 * ... IP FP ... IP FP 611 * 612 * We need to read FP and IP, so we need to adjust the upper 613 * bound by another unsigned long. 614 */ 615 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 616 top -= 2 * sizeof(unsigned long); 617 bottom = start; 618 619 sp = READ_ONCE(p->thread.sp); 620 if (sp < bottom || sp > top) 621 goto out; 622 623 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 624 do { 625 if (fp < bottom || fp > top) 626 goto out; 627 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 628 if (!in_sched_functions(ip)) { 629 ret = ip; 630 goto out; 631 } 632 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 633 } while (count++ < 16 && p->state != TASK_RUNNING); 634 635 out: 636 put_task_stack(p); 637 return ret; 638 } 639 640 long do_arch_prctl_common(struct task_struct *task, int option, 641 unsigned long cpuid_enabled) 642 { 643 switch (option) { 644 case ARCH_GET_CPUID: 645 return get_cpuid_mode(); 646 case ARCH_SET_CPUID: 647 return set_cpuid_mode(task, cpuid_enabled); 648 } 649 650 return -EINVAL; 651 } 652