1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/prctl.h> 9 #include <linux/slab.h> 10 #include <linux/sched.h> 11 #include <linux/sched/idle.h> 12 #include <linux/sched/debug.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/pm.h> 18 #include <linux/tick.h> 19 #include <linux/random.h> 20 #include <linux/user-return-notifier.h> 21 #include <linux/dmi.h> 22 #include <linux/utsname.h> 23 #include <linux/stackprotector.h> 24 #include <linux/cpuidle.h> 25 #include <linux/acpi.h> 26 #include <linux/elf-randomize.h> 27 #include <trace/events/power.h> 28 #include <linux/hw_breakpoint.h> 29 #include <asm/cpu.h> 30 #include <asm/apic.h> 31 #include <linux/uaccess.h> 32 #include <asm/mwait.h> 33 #include <asm/fpu/internal.h> 34 #include <asm/debugreg.h> 35 #include <asm/nmi.h> 36 #include <asm/tlbflush.h> 37 #include <asm/mce.h> 38 #include <asm/vm86.h> 39 #include <asm/switch_to.h> 40 #include <asm/desc.h> 41 #include <asm/prctl.h> 42 #include <asm/spec-ctrl.h> 43 #include <asm/io_bitmap.h> 44 #include <asm/proto.h> 45 #include <asm/frame.h> 46 47 #include "process.h" 48 49 /* 50 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 51 * no more per-task TSS's. The TSS size is kept cacheline-aligned 52 * so they are allowed to end up in the .data..cacheline_aligned 53 * section. Since TSS's are completely CPU-local, we want them 54 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 55 */ 56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 57 .x86_tss = { 58 /* 59 * .sp0 is only used when entering ring 0 from a lower 60 * privilege level. Since the init task never runs anything 61 * but ring 0 code, there is no need for a valid value here. 62 * Poison it. 63 */ 64 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 65 66 /* 67 * .sp1 is cpu_current_top_of_stack. The init task never 68 * runs user code, but cpu_current_top_of_stack should still 69 * be well defined before the first context switch. 70 */ 71 .sp1 = TOP_OF_INIT_STACK, 72 73 #ifdef CONFIG_X86_32 74 .ss0 = __KERNEL_DS, 75 .ss1 = __KERNEL_CS, 76 #endif 77 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 78 }, 79 }; 80 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 81 82 DEFINE_PER_CPU(bool, __tss_limit_invalid); 83 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 84 85 /* 86 * this gets called so that we can store lazy state into memory and copy the 87 * current task into the new thread. 88 */ 89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 90 { 91 memcpy(dst, src, arch_task_struct_size); 92 #ifdef CONFIG_VM86 93 dst->thread.vm86 = NULL; 94 #endif 95 96 return fpu__copy(dst, src); 97 } 98 99 /* 100 * Free thread data structures etc.. 101 */ 102 void exit_thread(struct task_struct *tsk) 103 { 104 struct thread_struct *t = &tsk->thread; 105 struct fpu *fpu = &t->fpu; 106 107 if (test_thread_flag(TIF_IO_BITMAP)) 108 io_bitmap_exit(tsk); 109 110 free_vm86(t); 111 112 fpu__drop(fpu); 113 } 114 115 static int set_new_tls(struct task_struct *p, unsigned long tls) 116 { 117 struct user_desc __user *utls = (struct user_desc __user *)tls; 118 119 if (in_ia32_syscall()) 120 return do_set_thread_area(p, -1, utls, 0); 121 else 122 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 123 } 124 125 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg, 126 struct task_struct *p, unsigned long tls) 127 { 128 struct inactive_task_frame *frame; 129 struct fork_frame *fork_frame; 130 struct pt_regs *childregs; 131 int ret = 0; 132 133 childregs = task_pt_regs(p); 134 fork_frame = container_of(childregs, struct fork_frame, regs); 135 frame = &fork_frame->frame; 136 137 frame->bp = encode_frame_pointer(childregs); 138 frame->ret_addr = (unsigned long) ret_from_fork; 139 p->thread.sp = (unsigned long) fork_frame; 140 p->thread.io_bitmap = NULL; 141 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 142 143 #ifdef CONFIG_X86_64 144 current_save_fsgs(); 145 p->thread.fsindex = current->thread.fsindex; 146 p->thread.fsbase = current->thread.fsbase; 147 p->thread.gsindex = current->thread.gsindex; 148 p->thread.gsbase = current->thread.gsbase; 149 150 savesegment(es, p->thread.es); 151 savesegment(ds, p->thread.ds); 152 #else 153 p->thread.sp0 = (unsigned long) (childregs + 1); 154 /* 155 * Clear all status flags including IF and set fixed bit. 64bit 156 * does not have this initialization as the frame does not contain 157 * flags. The flags consistency (especially vs. AC) is there 158 * ensured via objtool, which lacks 32bit support. 159 */ 160 frame->flags = X86_EFLAGS_FIXED; 161 #endif 162 163 /* Kernel thread ? */ 164 if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) { 165 memset(childregs, 0, sizeof(struct pt_regs)); 166 kthread_frame_init(frame, sp, arg); 167 return 0; 168 } 169 170 frame->bx = 0; 171 *childregs = *current_pt_regs(); 172 childregs->ax = 0; 173 if (sp) 174 childregs->sp = sp; 175 176 #ifdef CONFIG_X86_32 177 task_user_gs(p) = get_user_gs(current_pt_regs()); 178 #endif 179 180 /* Set a new TLS for the child thread? */ 181 if (clone_flags & CLONE_SETTLS) 182 ret = set_new_tls(p, tls); 183 184 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 185 io_bitmap_share(p); 186 187 return ret; 188 } 189 190 void flush_thread(void) 191 { 192 struct task_struct *tsk = current; 193 194 flush_ptrace_hw_breakpoint(tsk); 195 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 196 197 fpu__clear_all(&tsk->thread.fpu); 198 } 199 200 void disable_TSC(void) 201 { 202 preempt_disable(); 203 if (!test_and_set_thread_flag(TIF_NOTSC)) 204 /* 205 * Must flip the CPU state synchronously with 206 * TIF_NOTSC in the current running context. 207 */ 208 cr4_set_bits(X86_CR4_TSD); 209 preempt_enable(); 210 } 211 212 static void enable_TSC(void) 213 { 214 preempt_disable(); 215 if (test_and_clear_thread_flag(TIF_NOTSC)) 216 /* 217 * Must flip the CPU state synchronously with 218 * TIF_NOTSC in the current running context. 219 */ 220 cr4_clear_bits(X86_CR4_TSD); 221 preempt_enable(); 222 } 223 224 int get_tsc_mode(unsigned long adr) 225 { 226 unsigned int val; 227 228 if (test_thread_flag(TIF_NOTSC)) 229 val = PR_TSC_SIGSEGV; 230 else 231 val = PR_TSC_ENABLE; 232 233 return put_user(val, (unsigned int __user *)adr); 234 } 235 236 int set_tsc_mode(unsigned int val) 237 { 238 if (val == PR_TSC_SIGSEGV) 239 disable_TSC(); 240 else if (val == PR_TSC_ENABLE) 241 enable_TSC(); 242 else 243 return -EINVAL; 244 245 return 0; 246 } 247 248 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 249 250 static void set_cpuid_faulting(bool on) 251 { 252 u64 msrval; 253 254 msrval = this_cpu_read(msr_misc_features_shadow); 255 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 256 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 257 this_cpu_write(msr_misc_features_shadow, msrval); 258 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 259 } 260 261 static void disable_cpuid(void) 262 { 263 preempt_disable(); 264 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 265 /* 266 * Must flip the CPU state synchronously with 267 * TIF_NOCPUID in the current running context. 268 */ 269 set_cpuid_faulting(true); 270 } 271 preempt_enable(); 272 } 273 274 static void enable_cpuid(void) 275 { 276 preempt_disable(); 277 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 278 /* 279 * Must flip the CPU state synchronously with 280 * TIF_NOCPUID in the current running context. 281 */ 282 set_cpuid_faulting(false); 283 } 284 preempt_enable(); 285 } 286 287 static int get_cpuid_mode(void) 288 { 289 return !test_thread_flag(TIF_NOCPUID); 290 } 291 292 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) 293 { 294 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 295 return -ENODEV; 296 297 if (cpuid_enabled) 298 enable_cpuid(); 299 else 300 disable_cpuid(); 301 302 return 0; 303 } 304 305 /* 306 * Called immediately after a successful exec. 307 */ 308 void arch_setup_new_exec(void) 309 { 310 /* If cpuid was previously disabled for this task, re-enable it. */ 311 if (test_thread_flag(TIF_NOCPUID)) 312 enable_cpuid(); 313 314 /* 315 * Don't inherit TIF_SSBD across exec boundary when 316 * PR_SPEC_DISABLE_NOEXEC is used. 317 */ 318 if (test_thread_flag(TIF_SSBD) && 319 task_spec_ssb_noexec(current)) { 320 clear_thread_flag(TIF_SSBD); 321 task_clear_spec_ssb_disable(current); 322 task_clear_spec_ssb_noexec(current); 323 speculation_ctrl_update(task_thread_info(current)->flags); 324 } 325 } 326 327 #ifdef CONFIG_X86_IOPL_IOPERM 328 static inline void switch_to_bitmap(unsigned long tifp) 329 { 330 /* 331 * Invalidate I/O bitmap if the previous task used it. This prevents 332 * any possible leakage of an active I/O bitmap. 333 * 334 * If the next task has an I/O bitmap it will handle it on exit to 335 * user mode. 336 */ 337 if (tifp & _TIF_IO_BITMAP) 338 tss_invalidate_io_bitmap(); 339 } 340 341 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 342 { 343 /* 344 * Copy at least the byte range of the incoming tasks bitmap which 345 * covers the permitted I/O ports. 346 * 347 * If the previous task which used an I/O bitmap had more bits 348 * permitted, then the copy needs to cover those as well so they 349 * get turned off. 350 */ 351 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 352 max(tss->io_bitmap.prev_max, iobm->max)); 353 354 /* 355 * Store the new max and the sequence number of this bitmap 356 * and a pointer to the bitmap itself. 357 */ 358 tss->io_bitmap.prev_max = iobm->max; 359 tss->io_bitmap.prev_sequence = iobm->sequence; 360 } 361 362 /** 363 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode 364 */ 365 void native_tss_update_io_bitmap(void) 366 { 367 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 368 struct thread_struct *t = ¤t->thread; 369 u16 *base = &tss->x86_tss.io_bitmap_base; 370 371 if (!test_thread_flag(TIF_IO_BITMAP)) { 372 native_tss_invalidate_io_bitmap(); 373 return; 374 } 375 376 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 377 *base = IO_BITMAP_OFFSET_VALID_ALL; 378 } else { 379 struct io_bitmap *iobm = t->io_bitmap; 380 381 /* 382 * Only copy bitmap data when the sequence number differs. The 383 * update time is accounted to the incoming task. 384 */ 385 if (tss->io_bitmap.prev_sequence != iobm->sequence) 386 tss_copy_io_bitmap(tss, iobm); 387 388 /* Enable the bitmap */ 389 *base = IO_BITMAP_OFFSET_VALID_MAP; 390 } 391 392 /* 393 * Make sure that the TSS limit is covering the IO bitmap. It might have 394 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 395 * access from user space to trigger a #GP because tbe bitmap is outside 396 * the TSS limit. 397 */ 398 refresh_tss_limit(); 399 } 400 #else /* CONFIG_X86_IOPL_IOPERM */ 401 static inline void switch_to_bitmap(unsigned long tifp) { } 402 #endif 403 404 #ifdef CONFIG_SMP 405 406 struct ssb_state { 407 struct ssb_state *shared_state; 408 raw_spinlock_t lock; 409 unsigned int disable_state; 410 unsigned long local_state; 411 }; 412 413 #define LSTATE_SSB 0 414 415 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 416 417 void speculative_store_bypass_ht_init(void) 418 { 419 struct ssb_state *st = this_cpu_ptr(&ssb_state); 420 unsigned int this_cpu = smp_processor_id(); 421 unsigned int cpu; 422 423 st->local_state = 0; 424 425 /* 426 * Shared state setup happens once on the first bringup 427 * of the CPU. It's not destroyed on CPU hotunplug. 428 */ 429 if (st->shared_state) 430 return; 431 432 raw_spin_lock_init(&st->lock); 433 434 /* 435 * Go over HT siblings and check whether one of them has set up the 436 * shared state pointer already. 437 */ 438 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 439 if (cpu == this_cpu) 440 continue; 441 442 if (!per_cpu(ssb_state, cpu).shared_state) 443 continue; 444 445 /* Link it to the state of the sibling: */ 446 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 447 return; 448 } 449 450 /* 451 * First HT sibling to come up on the core. Link shared state of 452 * the first HT sibling to itself. The siblings on the same core 453 * which come up later will see the shared state pointer and link 454 * themself to the state of this CPU. 455 */ 456 st->shared_state = st; 457 } 458 459 /* 460 * Logic is: First HT sibling enables SSBD for both siblings in the core 461 * and last sibling to disable it, disables it for the whole core. This how 462 * MSR_SPEC_CTRL works in "hardware": 463 * 464 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 465 */ 466 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 467 { 468 struct ssb_state *st = this_cpu_ptr(&ssb_state); 469 u64 msr = x86_amd_ls_cfg_base; 470 471 if (!static_cpu_has(X86_FEATURE_ZEN)) { 472 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 473 wrmsrl(MSR_AMD64_LS_CFG, msr); 474 return; 475 } 476 477 if (tifn & _TIF_SSBD) { 478 /* 479 * Since this can race with prctl(), block reentry on the 480 * same CPU. 481 */ 482 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 483 return; 484 485 msr |= x86_amd_ls_cfg_ssbd_mask; 486 487 raw_spin_lock(&st->shared_state->lock); 488 /* First sibling enables SSBD: */ 489 if (!st->shared_state->disable_state) 490 wrmsrl(MSR_AMD64_LS_CFG, msr); 491 st->shared_state->disable_state++; 492 raw_spin_unlock(&st->shared_state->lock); 493 } else { 494 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 495 return; 496 497 raw_spin_lock(&st->shared_state->lock); 498 st->shared_state->disable_state--; 499 if (!st->shared_state->disable_state) 500 wrmsrl(MSR_AMD64_LS_CFG, msr); 501 raw_spin_unlock(&st->shared_state->lock); 502 } 503 } 504 #else 505 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 506 { 507 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 508 509 wrmsrl(MSR_AMD64_LS_CFG, msr); 510 } 511 #endif 512 513 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 514 { 515 /* 516 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 517 * so ssbd_tif_to_spec_ctrl() just works. 518 */ 519 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 520 } 521 522 /* 523 * Update the MSRs managing speculation control, during context switch. 524 * 525 * tifp: Previous task's thread flags 526 * tifn: Next task's thread flags 527 */ 528 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 529 unsigned long tifn) 530 { 531 unsigned long tif_diff = tifp ^ tifn; 532 u64 msr = x86_spec_ctrl_base; 533 bool updmsr = false; 534 535 lockdep_assert_irqs_disabled(); 536 537 /* Handle change of TIF_SSBD depending on the mitigation method. */ 538 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 539 if (tif_diff & _TIF_SSBD) 540 amd_set_ssb_virt_state(tifn); 541 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 542 if (tif_diff & _TIF_SSBD) 543 amd_set_core_ssb_state(tifn); 544 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 545 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 546 updmsr |= !!(tif_diff & _TIF_SSBD); 547 msr |= ssbd_tif_to_spec_ctrl(tifn); 548 } 549 550 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ 551 if (IS_ENABLED(CONFIG_SMP) && 552 static_branch_unlikely(&switch_to_cond_stibp)) { 553 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 554 msr |= stibp_tif_to_spec_ctrl(tifn); 555 } 556 557 if (updmsr) 558 wrmsrl(MSR_IA32_SPEC_CTRL, msr); 559 } 560 561 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 562 { 563 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 564 if (task_spec_ssb_disable(tsk)) 565 set_tsk_thread_flag(tsk, TIF_SSBD); 566 else 567 clear_tsk_thread_flag(tsk, TIF_SSBD); 568 569 if (task_spec_ib_disable(tsk)) 570 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 571 else 572 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 573 } 574 /* Return the updated threadinfo flags*/ 575 return task_thread_info(tsk)->flags; 576 } 577 578 void speculation_ctrl_update(unsigned long tif) 579 { 580 unsigned long flags; 581 582 /* Forced update. Make sure all relevant TIF flags are different */ 583 local_irq_save(flags); 584 __speculation_ctrl_update(~tif, tif); 585 local_irq_restore(flags); 586 } 587 588 /* Called from seccomp/prctl update */ 589 void speculation_ctrl_update_current(void) 590 { 591 preempt_disable(); 592 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 593 preempt_enable(); 594 } 595 596 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 597 { 598 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 599 600 newval = cr4 ^ mask; 601 if (newval != cr4) { 602 this_cpu_write(cpu_tlbstate.cr4, newval); 603 __write_cr4(newval); 604 } 605 } 606 607 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 608 { 609 unsigned long tifp, tifn; 610 611 tifn = READ_ONCE(task_thread_info(next_p)->flags); 612 tifp = READ_ONCE(task_thread_info(prev_p)->flags); 613 614 switch_to_bitmap(tifp); 615 616 propagate_user_return_notify(prev_p, next_p); 617 618 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 619 arch_has_block_step()) { 620 unsigned long debugctl, msk; 621 622 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 623 debugctl &= ~DEBUGCTLMSR_BTF; 624 msk = tifn & _TIF_BLOCKSTEP; 625 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 626 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 627 } 628 629 if ((tifp ^ tifn) & _TIF_NOTSC) 630 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 631 632 if ((tifp ^ tifn) & _TIF_NOCPUID) 633 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 634 635 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 636 __speculation_ctrl_update(tifp, tifn); 637 } else { 638 speculation_ctrl_update_tif(prev_p); 639 tifn = speculation_ctrl_update_tif(next_p); 640 641 /* Enforce MSR update to ensure consistent state */ 642 __speculation_ctrl_update(~tifn, tifn); 643 } 644 645 if ((tifp ^ tifn) & _TIF_SLD) 646 switch_to_sld(tifn); 647 } 648 649 /* 650 * Idle related variables and functions 651 */ 652 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 653 EXPORT_SYMBOL(boot_option_idle_override); 654 655 static void (*x86_idle)(void); 656 657 #ifndef CONFIG_SMP 658 static inline void play_dead(void) 659 { 660 BUG(); 661 } 662 #endif 663 664 void arch_cpu_idle_enter(void) 665 { 666 tsc_verify_tsc_adjust(false); 667 local_touch_nmi(); 668 } 669 670 void arch_cpu_idle_dead(void) 671 { 672 play_dead(); 673 } 674 675 /* 676 * Called from the generic idle code. 677 */ 678 void arch_cpu_idle(void) 679 { 680 x86_idle(); 681 } 682 683 /* 684 * We use this if we don't have any better idle routine.. 685 */ 686 void __cpuidle default_idle(void) 687 { 688 raw_safe_halt(); 689 } 690 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 691 EXPORT_SYMBOL(default_idle); 692 #endif 693 694 #ifdef CONFIG_XEN 695 bool xen_set_default_idle(void) 696 { 697 bool ret = !!x86_idle; 698 699 x86_idle = default_idle; 700 701 return ret; 702 } 703 #endif 704 705 void stop_this_cpu(void *dummy) 706 { 707 local_irq_disable(); 708 /* 709 * Remove this CPU: 710 */ 711 set_cpu_online(smp_processor_id(), false); 712 disable_local_APIC(); 713 mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); 714 715 /* 716 * Use wbinvd on processors that support SME. This provides support 717 * for performing a successful kexec when going from SME inactive 718 * to SME active (or vice-versa). The cache must be cleared so that 719 * if there are entries with the same physical address, both with and 720 * without the encryption bit, they don't race each other when flushed 721 * and potentially end up with the wrong entry being committed to 722 * memory. 723 */ 724 if (boot_cpu_has(X86_FEATURE_SME)) 725 native_wbinvd(); 726 for (;;) { 727 /* 728 * Use native_halt() so that memory contents don't change 729 * (stack usage and variables) after possibly issuing the 730 * native_wbinvd() above. 731 */ 732 native_halt(); 733 } 734 } 735 736 /* 737 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 738 * states (local apic timer and TSC stop). 739 * 740 * XXX this function is completely buggered vs RCU and tracing. 741 */ 742 static void amd_e400_idle(void) 743 { 744 /* 745 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 746 * gets set after static_cpu_has() places have been converted via 747 * alternatives. 748 */ 749 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 750 default_idle(); 751 return; 752 } 753 754 tick_broadcast_enter(); 755 756 default_idle(); 757 758 /* 759 * The switch back from broadcast mode needs to be called with 760 * interrupts disabled. 761 */ 762 raw_local_irq_disable(); 763 tick_broadcast_exit(); 764 raw_local_irq_enable(); 765 } 766 767 /* 768 * Intel Core2 and older machines prefer MWAIT over HALT for C1. 769 * We can't rely on cpuidle installing MWAIT, because it will not load 770 * on systems that support only C1 -- so the boot default must be MWAIT. 771 * 772 * Some AMD machines are the opposite, they depend on using HALT. 773 * 774 * So for default C1, which is used during boot until cpuidle loads, 775 * use MWAIT-C1 on Intel HW that has it, else use HALT. 776 */ 777 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 778 { 779 if (c->x86_vendor != X86_VENDOR_INTEL) 780 return 0; 781 782 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR)) 783 return 0; 784 785 return 1; 786 } 787 788 /* 789 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 790 * with interrupts enabled and no flags, which is backwards compatible with the 791 * original MWAIT implementation. 792 */ 793 static __cpuidle void mwait_idle(void) 794 { 795 if (!current_set_polling_and_test()) { 796 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 797 mb(); /* quirk */ 798 clflush((void *)¤t_thread_info()->flags); 799 mb(); /* quirk */ 800 } 801 802 __monitor((void *)¤t_thread_info()->flags, 0, 0); 803 if (!need_resched()) 804 __sti_mwait(0, 0); 805 else 806 raw_local_irq_enable(); 807 } else { 808 raw_local_irq_enable(); 809 } 810 __current_clr_polling(); 811 } 812 813 void select_idle_routine(const struct cpuinfo_x86 *c) 814 { 815 #ifdef CONFIG_SMP 816 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 817 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 818 #endif 819 if (x86_idle || boot_option_idle_override == IDLE_POLL) 820 return; 821 822 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 823 pr_info("using AMD E400 aware idle routine\n"); 824 x86_idle = amd_e400_idle; 825 } else if (prefer_mwait_c1_over_halt(c)) { 826 pr_info("using mwait in idle threads\n"); 827 x86_idle = mwait_idle; 828 } else 829 x86_idle = default_idle; 830 } 831 832 void amd_e400_c1e_apic_setup(void) 833 { 834 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 835 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 836 local_irq_disable(); 837 tick_broadcast_force(); 838 local_irq_enable(); 839 } 840 } 841 842 void __init arch_post_acpi_subsys_init(void) 843 { 844 u32 lo, hi; 845 846 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 847 return; 848 849 /* 850 * AMD E400 detection needs to happen after ACPI has been enabled. If 851 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 852 * MSR_K8_INT_PENDING_MSG. 853 */ 854 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 855 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 856 return; 857 858 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 859 860 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 861 mark_tsc_unstable("TSC halt in AMD C1E"); 862 pr_info("System has AMD C1E enabled\n"); 863 } 864 865 static int __init idle_setup(char *str) 866 { 867 if (!str) 868 return -EINVAL; 869 870 if (!strcmp(str, "poll")) { 871 pr_info("using polling idle threads\n"); 872 boot_option_idle_override = IDLE_POLL; 873 cpu_idle_poll_ctrl(true); 874 } else if (!strcmp(str, "halt")) { 875 /* 876 * When the boot option of idle=halt is added, halt is 877 * forced to be used for CPU idle. In such case CPU C2/C3 878 * won't be used again. 879 * To continue to load the CPU idle driver, don't touch 880 * the boot_option_idle_override. 881 */ 882 x86_idle = default_idle; 883 boot_option_idle_override = IDLE_HALT; 884 } else if (!strcmp(str, "nomwait")) { 885 /* 886 * If the boot option of "idle=nomwait" is added, 887 * it means that mwait will be disabled for CPU C2/C3 888 * states. In such case it won't touch the variable 889 * of boot_option_idle_override. 890 */ 891 boot_option_idle_override = IDLE_NOMWAIT; 892 } else 893 return -1; 894 895 return 0; 896 } 897 early_param("idle", idle_setup); 898 899 unsigned long arch_align_stack(unsigned long sp) 900 { 901 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 902 sp -= get_random_int() % 8192; 903 return sp & ~0xf; 904 } 905 906 unsigned long arch_randomize_brk(struct mm_struct *mm) 907 { 908 return randomize_page(mm->brk, 0x02000000); 909 } 910 911 /* 912 * Called from fs/proc with a reference on @p to find the function 913 * which called into schedule(). This needs to be done carefully 914 * because the task might wake up and we might look at a stack 915 * changing under us. 916 */ 917 unsigned long get_wchan(struct task_struct *p) 918 { 919 unsigned long start, bottom, top, sp, fp, ip, ret = 0; 920 int count = 0; 921 922 if (p == current || p->state == TASK_RUNNING) 923 return 0; 924 925 if (!try_get_task_stack(p)) 926 return 0; 927 928 start = (unsigned long)task_stack_page(p); 929 if (!start) 930 goto out; 931 932 /* 933 * Layout of the stack page: 934 * 935 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) 936 * PADDING 937 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING 938 * stack 939 * ----------- bottom = start 940 * 941 * The tasks stack pointer points at the location where the 942 * framepointer is stored. The data on the stack is: 943 * ... IP FP ... IP FP 944 * 945 * We need to read FP and IP, so we need to adjust the upper 946 * bound by another unsigned long. 947 */ 948 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; 949 top -= 2 * sizeof(unsigned long); 950 bottom = start; 951 952 sp = READ_ONCE(p->thread.sp); 953 if (sp < bottom || sp > top) 954 goto out; 955 956 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); 957 do { 958 if (fp < bottom || fp > top) 959 goto out; 960 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); 961 if (!in_sched_functions(ip)) { 962 ret = ip; 963 goto out; 964 } 965 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); 966 } while (count++ < 16 && p->state != TASK_RUNNING); 967 968 out: 969 put_task_stack(p); 970 return ret; 971 } 972 973 long do_arch_prctl_common(struct task_struct *task, int option, 974 unsigned long cpuid_enabled) 975 { 976 switch (option) { 977 case ARCH_GET_CPUID: 978 return get_cpuid_mode(); 979 case ARCH_SET_CPUID: 980 return set_cpuid_mode(task, cpuid_enabled); 981 } 982 983 return -EINVAL; 984 } 985