1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/errno.h> 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/smp.h> 8 #include <linux/cpu.h> 9 #include <linux/prctl.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 12 #include <linux/sched/idle.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/init.h> 17 #include <linux/export.h> 18 #include <linux/pm.h> 19 #include <linux/tick.h> 20 #include <linux/random.h> 21 #include <linux/user-return-notifier.h> 22 #include <linux/dmi.h> 23 #include <linux/utsname.h> 24 #include <linux/stackprotector.h> 25 #include <linux/cpuidle.h> 26 #include <linux/acpi.h> 27 #include <linux/elf-randomize.h> 28 #include <linux/static_call.h> 29 #include <trace/events/power.h> 30 #include <linux/hw_breakpoint.h> 31 #include <linux/entry-common.h> 32 #include <asm/cpu.h> 33 #include <asm/apic.h> 34 #include <linux/uaccess.h> 35 #include <asm/mwait.h> 36 #include <asm/fpu/api.h> 37 #include <asm/fpu/sched.h> 38 #include <asm/fpu/xstate.h> 39 #include <asm/debugreg.h> 40 #include <asm/nmi.h> 41 #include <asm/tlbflush.h> 42 #include <asm/mce.h> 43 #include <asm/vm86.h> 44 #include <asm/switch_to.h> 45 #include <asm/desc.h> 46 #include <asm/prctl.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/io_bitmap.h> 49 #include <asm/proto.h> 50 #include <asm/frame.h> 51 #include <asm/unwind.h> 52 #include <asm/tdx.h> 53 #include <asm/mmu_context.h> 54 #include <asm/shstk.h> 55 56 #include "process.h" 57 58 /* 59 * per-CPU TSS segments. Threads are completely 'soft' on Linux, 60 * no more per-task TSS's. The TSS size is kept cacheline-aligned 61 * so they are allowed to end up in the .data..cacheline_aligned 62 * section. Since TSS's are completely CPU-local, we want them 63 * on exact cacheline boundaries, to eliminate cacheline ping-pong. 64 */ 65 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { 66 .x86_tss = { 67 /* 68 * .sp0 is only used when entering ring 0 from a lower 69 * privilege level. Since the init task never runs anything 70 * but ring 0 code, there is no need for a valid value here. 71 * Poison it. 72 */ 73 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, 74 75 #ifdef CONFIG_X86_32 76 .sp1 = TOP_OF_INIT_STACK, 77 78 .ss0 = __KERNEL_DS, 79 .ss1 = __KERNEL_CS, 80 #endif 81 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, 82 }, 83 }; 84 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); 85 86 DEFINE_PER_CPU(bool, __tss_limit_invalid); 87 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); 88 89 /* 90 * this gets called so that we can store lazy state into memory and copy the 91 * current task into the new thread. 92 */ 93 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 94 { 95 /* init_task is not dynamically sized (incomplete FPU state) */ 96 if (unlikely(src == &init_task)) 97 memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(init_task), 0); 98 else 99 memcpy(dst, src, arch_task_struct_size); 100 101 #ifdef CONFIG_VM86 102 dst->thread.vm86 = NULL; 103 #endif 104 /* Drop the copied pointer to current's fpstate */ 105 dst->thread.fpu.fpstate = NULL; 106 107 return 0; 108 } 109 110 #ifdef CONFIG_X86_64 111 void arch_release_task_struct(struct task_struct *tsk) 112 { 113 if (fpu_state_size_dynamic()) 114 fpstate_free(&tsk->thread.fpu); 115 } 116 #endif 117 118 /* 119 * Free thread data structures etc.. 120 */ 121 void exit_thread(struct task_struct *tsk) 122 { 123 struct thread_struct *t = &tsk->thread; 124 struct fpu *fpu = &t->fpu; 125 126 if (test_thread_flag(TIF_IO_BITMAP)) 127 io_bitmap_exit(tsk); 128 129 free_vm86(t); 130 131 shstk_free(tsk); 132 fpu__drop(fpu); 133 } 134 135 static int set_new_tls(struct task_struct *p, unsigned long tls) 136 { 137 struct user_desc __user *utls = (struct user_desc __user *)tls; 138 139 if (in_ia32_syscall()) 140 return do_set_thread_area(p, -1, utls, 0); 141 else 142 return do_set_thread_area_64(p, ARCH_SET_FS, tls); 143 } 144 145 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs, 146 int (*fn)(void *), void *fn_arg) 147 { 148 schedule_tail(prev); 149 150 /* Is this a kernel thread? */ 151 if (unlikely(fn)) { 152 fn(fn_arg); 153 /* 154 * A kernel thread is allowed to return here after successfully 155 * calling kernel_execve(). Exit to userspace to complete the 156 * execve() syscall. 157 */ 158 regs->ax = 0; 159 } 160 161 syscall_exit_to_user_mode(regs); 162 } 163 164 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 165 { 166 unsigned long clone_flags = args->flags; 167 unsigned long sp = args->stack; 168 unsigned long tls = args->tls; 169 struct inactive_task_frame *frame; 170 struct fork_frame *fork_frame; 171 struct pt_regs *childregs; 172 unsigned long new_ssp; 173 int ret = 0; 174 175 childregs = task_pt_regs(p); 176 fork_frame = container_of(childregs, struct fork_frame, regs); 177 frame = &fork_frame->frame; 178 179 frame->bp = encode_frame_pointer(childregs); 180 frame->ret_addr = (unsigned long) ret_from_fork_asm; 181 p->thread.sp = (unsigned long) fork_frame; 182 p->thread.io_bitmap = NULL; 183 p->thread.iopl_warn = 0; 184 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); 185 186 #ifdef CONFIG_X86_64 187 current_save_fsgs(); 188 p->thread.fsindex = current->thread.fsindex; 189 p->thread.fsbase = current->thread.fsbase; 190 p->thread.gsindex = current->thread.gsindex; 191 p->thread.gsbase = current->thread.gsbase; 192 193 savesegment(es, p->thread.es); 194 savesegment(ds, p->thread.ds); 195 196 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM) 197 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags); 198 #else 199 p->thread.sp0 = (unsigned long) (childregs + 1); 200 savesegment(gs, p->thread.gs); 201 /* 202 * Clear all status flags including IF and set fixed bit. 64bit 203 * does not have this initialization as the frame does not contain 204 * flags. The flags consistency (especially vs. AC) is there 205 * ensured via objtool, which lacks 32bit support. 206 */ 207 frame->flags = X86_EFLAGS_FIXED; 208 #endif 209 210 /* 211 * Allocate a new shadow stack for thread if needed. If shadow stack, 212 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to 213 * update it. 214 */ 215 new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size); 216 if (IS_ERR_VALUE(new_ssp)) 217 return PTR_ERR((void *)new_ssp); 218 219 fpu_clone(p, clone_flags, args->fn, new_ssp); 220 221 /* Kernel thread ? */ 222 if (unlikely(p->flags & PF_KTHREAD)) { 223 p->thread.pkru = pkru_get_init_value(); 224 memset(childregs, 0, sizeof(struct pt_regs)); 225 kthread_frame_init(frame, args->fn, args->fn_arg); 226 return 0; 227 } 228 229 /* 230 * Clone current's PKRU value from hardware. tsk->thread.pkru 231 * is only valid when scheduled out. 232 */ 233 p->thread.pkru = read_pkru(); 234 235 frame->bx = 0; 236 *childregs = *current_pt_regs(); 237 childregs->ax = 0; 238 if (sp) 239 childregs->sp = sp; 240 241 if (unlikely(args->fn)) { 242 /* 243 * A user space thread, but it doesn't return to 244 * ret_after_fork(). 245 * 246 * In order to indicate that to tools like gdb, 247 * we reset the stack and instruction pointers. 248 * 249 * It does the same kernel frame setup to return to a kernel 250 * function that a kernel thread does. 251 */ 252 childregs->sp = 0; 253 childregs->ip = 0; 254 kthread_frame_init(frame, args->fn, args->fn_arg); 255 return 0; 256 } 257 258 /* Set a new TLS for the child thread? */ 259 if (clone_flags & CLONE_SETTLS) 260 ret = set_new_tls(p, tls); 261 262 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) 263 io_bitmap_share(p); 264 265 return ret; 266 } 267 268 static void pkru_flush_thread(void) 269 { 270 /* 271 * If PKRU is enabled the default PKRU value has to be loaded into 272 * the hardware right here (similar to context switch). 273 */ 274 pkru_write_default(); 275 } 276 277 void flush_thread(void) 278 { 279 struct task_struct *tsk = current; 280 281 flush_ptrace_hw_breakpoint(tsk); 282 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 283 284 fpu_flush_thread(); 285 pkru_flush_thread(); 286 } 287 288 void disable_TSC(void) 289 { 290 preempt_disable(); 291 if (!test_and_set_thread_flag(TIF_NOTSC)) 292 /* 293 * Must flip the CPU state synchronously with 294 * TIF_NOTSC in the current running context. 295 */ 296 cr4_set_bits(X86_CR4_TSD); 297 preempt_enable(); 298 } 299 300 static void enable_TSC(void) 301 { 302 preempt_disable(); 303 if (test_and_clear_thread_flag(TIF_NOTSC)) 304 /* 305 * Must flip the CPU state synchronously with 306 * TIF_NOTSC in the current running context. 307 */ 308 cr4_clear_bits(X86_CR4_TSD); 309 preempt_enable(); 310 } 311 312 int get_tsc_mode(unsigned long adr) 313 { 314 unsigned int val; 315 316 if (test_thread_flag(TIF_NOTSC)) 317 val = PR_TSC_SIGSEGV; 318 else 319 val = PR_TSC_ENABLE; 320 321 return put_user(val, (unsigned int __user *)adr); 322 } 323 324 int set_tsc_mode(unsigned int val) 325 { 326 if (val == PR_TSC_SIGSEGV) 327 disable_TSC(); 328 else if (val == PR_TSC_ENABLE) 329 enable_TSC(); 330 else 331 return -EINVAL; 332 333 return 0; 334 } 335 336 DEFINE_PER_CPU(u64, msr_misc_features_shadow); 337 338 static void set_cpuid_faulting(bool on) 339 { 340 u64 msrval; 341 342 msrval = this_cpu_read(msr_misc_features_shadow); 343 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; 344 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); 345 this_cpu_write(msr_misc_features_shadow, msrval); 346 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); 347 } 348 349 static void disable_cpuid(void) 350 { 351 preempt_disable(); 352 if (!test_and_set_thread_flag(TIF_NOCPUID)) { 353 /* 354 * Must flip the CPU state synchronously with 355 * TIF_NOCPUID in the current running context. 356 */ 357 set_cpuid_faulting(true); 358 } 359 preempt_enable(); 360 } 361 362 static void enable_cpuid(void) 363 { 364 preempt_disable(); 365 if (test_and_clear_thread_flag(TIF_NOCPUID)) { 366 /* 367 * Must flip the CPU state synchronously with 368 * TIF_NOCPUID in the current running context. 369 */ 370 set_cpuid_faulting(false); 371 } 372 preempt_enable(); 373 } 374 375 static int get_cpuid_mode(void) 376 { 377 return !test_thread_flag(TIF_NOCPUID); 378 } 379 380 static int set_cpuid_mode(unsigned long cpuid_enabled) 381 { 382 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) 383 return -ENODEV; 384 385 if (cpuid_enabled) 386 enable_cpuid(); 387 else 388 disable_cpuid(); 389 390 return 0; 391 } 392 393 /* 394 * Called immediately after a successful exec. 395 */ 396 void arch_setup_new_exec(void) 397 { 398 /* If cpuid was previously disabled for this task, re-enable it. */ 399 if (test_thread_flag(TIF_NOCPUID)) 400 enable_cpuid(); 401 402 /* 403 * Don't inherit TIF_SSBD across exec boundary when 404 * PR_SPEC_DISABLE_NOEXEC is used. 405 */ 406 if (test_thread_flag(TIF_SSBD) && 407 task_spec_ssb_noexec(current)) { 408 clear_thread_flag(TIF_SSBD); 409 task_clear_spec_ssb_disable(current); 410 task_clear_spec_ssb_noexec(current); 411 speculation_ctrl_update(read_thread_flags()); 412 } 413 414 mm_reset_untag_mask(current->mm); 415 } 416 417 #ifdef CONFIG_X86_IOPL_IOPERM 418 static inline void switch_to_bitmap(unsigned long tifp) 419 { 420 /* 421 * Invalidate I/O bitmap if the previous task used it. This prevents 422 * any possible leakage of an active I/O bitmap. 423 * 424 * If the next task has an I/O bitmap it will handle it on exit to 425 * user mode. 426 */ 427 if (tifp & _TIF_IO_BITMAP) 428 tss_invalidate_io_bitmap(); 429 } 430 431 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) 432 { 433 /* 434 * Copy at least the byte range of the incoming tasks bitmap which 435 * covers the permitted I/O ports. 436 * 437 * If the previous task which used an I/O bitmap had more bits 438 * permitted, then the copy needs to cover those as well so they 439 * get turned off. 440 */ 441 memcpy(tss->io_bitmap.bitmap, iobm->bitmap, 442 max(tss->io_bitmap.prev_max, iobm->max)); 443 444 /* 445 * Store the new max and the sequence number of this bitmap 446 * and a pointer to the bitmap itself. 447 */ 448 tss->io_bitmap.prev_max = iobm->max; 449 tss->io_bitmap.prev_sequence = iobm->sequence; 450 } 451 452 /** 453 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode 454 */ 455 void native_tss_update_io_bitmap(void) 456 { 457 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 458 struct thread_struct *t = ¤t->thread; 459 u16 *base = &tss->x86_tss.io_bitmap_base; 460 461 if (!test_thread_flag(TIF_IO_BITMAP)) { 462 native_tss_invalidate_io_bitmap(); 463 return; 464 } 465 466 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { 467 *base = IO_BITMAP_OFFSET_VALID_ALL; 468 } else { 469 struct io_bitmap *iobm = t->io_bitmap; 470 471 /* 472 * Only copy bitmap data when the sequence number differs. The 473 * update time is accounted to the incoming task. 474 */ 475 if (tss->io_bitmap.prev_sequence != iobm->sequence) 476 tss_copy_io_bitmap(tss, iobm); 477 478 /* Enable the bitmap */ 479 *base = IO_BITMAP_OFFSET_VALID_MAP; 480 } 481 482 /* 483 * Make sure that the TSS limit is covering the IO bitmap. It might have 484 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O 485 * access from user space to trigger a #GP because tbe bitmap is outside 486 * the TSS limit. 487 */ 488 refresh_tss_limit(); 489 } 490 #else /* CONFIG_X86_IOPL_IOPERM */ 491 static inline void switch_to_bitmap(unsigned long tifp) { } 492 #endif 493 494 #ifdef CONFIG_SMP 495 496 struct ssb_state { 497 struct ssb_state *shared_state; 498 raw_spinlock_t lock; 499 unsigned int disable_state; 500 unsigned long local_state; 501 }; 502 503 #define LSTATE_SSB 0 504 505 static DEFINE_PER_CPU(struct ssb_state, ssb_state); 506 507 void speculative_store_bypass_ht_init(void) 508 { 509 struct ssb_state *st = this_cpu_ptr(&ssb_state); 510 unsigned int this_cpu = smp_processor_id(); 511 unsigned int cpu; 512 513 st->local_state = 0; 514 515 /* 516 * Shared state setup happens once on the first bringup 517 * of the CPU. It's not destroyed on CPU hotunplug. 518 */ 519 if (st->shared_state) 520 return; 521 522 raw_spin_lock_init(&st->lock); 523 524 /* 525 * Go over HT siblings and check whether one of them has set up the 526 * shared state pointer already. 527 */ 528 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { 529 if (cpu == this_cpu) 530 continue; 531 532 if (!per_cpu(ssb_state, cpu).shared_state) 533 continue; 534 535 /* Link it to the state of the sibling: */ 536 st->shared_state = per_cpu(ssb_state, cpu).shared_state; 537 return; 538 } 539 540 /* 541 * First HT sibling to come up on the core. Link shared state of 542 * the first HT sibling to itself. The siblings on the same core 543 * which come up later will see the shared state pointer and link 544 * themselves to the state of this CPU. 545 */ 546 st->shared_state = st; 547 } 548 549 /* 550 * Logic is: First HT sibling enables SSBD for both siblings in the core 551 * and last sibling to disable it, disables it for the whole core. This how 552 * MSR_SPEC_CTRL works in "hardware": 553 * 554 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL 555 */ 556 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 557 { 558 struct ssb_state *st = this_cpu_ptr(&ssb_state); 559 u64 msr = x86_amd_ls_cfg_base; 560 561 if (!static_cpu_has(X86_FEATURE_ZEN)) { 562 msr |= ssbd_tif_to_amd_ls_cfg(tifn); 563 wrmsrl(MSR_AMD64_LS_CFG, msr); 564 return; 565 } 566 567 if (tifn & _TIF_SSBD) { 568 /* 569 * Since this can race with prctl(), block reentry on the 570 * same CPU. 571 */ 572 if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) 573 return; 574 575 msr |= x86_amd_ls_cfg_ssbd_mask; 576 577 raw_spin_lock(&st->shared_state->lock); 578 /* First sibling enables SSBD: */ 579 if (!st->shared_state->disable_state) 580 wrmsrl(MSR_AMD64_LS_CFG, msr); 581 st->shared_state->disable_state++; 582 raw_spin_unlock(&st->shared_state->lock); 583 } else { 584 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) 585 return; 586 587 raw_spin_lock(&st->shared_state->lock); 588 st->shared_state->disable_state--; 589 if (!st->shared_state->disable_state) 590 wrmsrl(MSR_AMD64_LS_CFG, msr); 591 raw_spin_unlock(&st->shared_state->lock); 592 } 593 } 594 #else 595 static __always_inline void amd_set_core_ssb_state(unsigned long tifn) 596 { 597 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); 598 599 wrmsrl(MSR_AMD64_LS_CFG, msr); 600 } 601 #endif 602 603 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) 604 { 605 /* 606 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, 607 * so ssbd_tif_to_spec_ctrl() just works. 608 */ 609 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); 610 } 611 612 /* 613 * Update the MSRs managing speculation control, during context switch. 614 * 615 * tifp: Previous task's thread flags 616 * tifn: Next task's thread flags 617 */ 618 static __always_inline void __speculation_ctrl_update(unsigned long tifp, 619 unsigned long tifn) 620 { 621 unsigned long tif_diff = tifp ^ tifn; 622 u64 msr = x86_spec_ctrl_base; 623 bool updmsr = false; 624 625 lockdep_assert_irqs_disabled(); 626 627 /* Handle change of TIF_SSBD depending on the mitigation method. */ 628 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { 629 if (tif_diff & _TIF_SSBD) 630 amd_set_ssb_virt_state(tifn); 631 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { 632 if (tif_diff & _TIF_SSBD) 633 amd_set_core_ssb_state(tifn); 634 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || 635 static_cpu_has(X86_FEATURE_AMD_SSBD)) { 636 updmsr |= !!(tif_diff & _TIF_SSBD); 637 msr |= ssbd_tif_to_spec_ctrl(tifn); 638 } 639 640 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ 641 if (IS_ENABLED(CONFIG_SMP) && 642 static_branch_unlikely(&switch_to_cond_stibp)) { 643 updmsr |= !!(tif_diff & _TIF_SPEC_IB); 644 msr |= stibp_tif_to_spec_ctrl(tifn); 645 } 646 647 if (updmsr) 648 update_spec_ctrl_cond(msr); 649 } 650 651 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) 652 { 653 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { 654 if (task_spec_ssb_disable(tsk)) 655 set_tsk_thread_flag(tsk, TIF_SSBD); 656 else 657 clear_tsk_thread_flag(tsk, TIF_SSBD); 658 659 if (task_spec_ib_disable(tsk)) 660 set_tsk_thread_flag(tsk, TIF_SPEC_IB); 661 else 662 clear_tsk_thread_flag(tsk, TIF_SPEC_IB); 663 } 664 /* Return the updated threadinfo flags*/ 665 return read_task_thread_flags(tsk); 666 } 667 668 void speculation_ctrl_update(unsigned long tif) 669 { 670 unsigned long flags; 671 672 /* Forced update. Make sure all relevant TIF flags are different */ 673 local_irq_save(flags); 674 __speculation_ctrl_update(~tif, tif); 675 local_irq_restore(flags); 676 } 677 678 /* Called from seccomp/prctl update */ 679 void speculation_ctrl_update_current(void) 680 { 681 preempt_disable(); 682 speculation_ctrl_update(speculation_ctrl_update_tif(current)); 683 preempt_enable(); 684 } 685 686 static inline void cr4_toggle_bits_irqsoff(unsigned long mask) 687 { 688 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 689 690 newval = cr4 ^ mask; 691 if (newval != cr4) { 692 this_cpu_write(cpu_tlbstate.cr4, newval); 693 __write_cr4(newval); 694 } 695 } 696 697 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) 698 { 699 unsigned long tifp, tifn; 700 701 tifn = read_task_thread_flags(next_p); 702 tifp = read_task_thread_flags(prev_p); 703 704 switch_to_bitmap(tifp); 705 706 propagate_user_return_notify(prev_p, next_p); 707 708 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && 709 arch_has_block_step()) { 710 unsigned long debugctl, msk; 711 712 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 713 debugctl &= ~DEBUGCTLMSR_BTF; 714 msk = tifn & _TIF_BLOCKSTEP; 715 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; 716 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 717 } 718 719 if ((tifp ^ tifn) & _TIF_NOTSC) 720 cr4_toggle_bits_irqsoff(X86_CR4_TSD); 721 722 if ((tifp ^ tifn) & _TIF_NOCPUID) 723 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); 724 725 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { 726 __speculation_ctrl_update(tifp, tifn); 727 } else { 728 speculation_ctrl_update_tif(prev_p); 729 tifn = speculation_ctrl_update_tif(next_p); 730 731 /* Enforce MSR update to ensure consistent state */ 732 __speculation_ctrl_update(~tifn, tifn); 733 } 734 } 735 736 /* 737 * Idle related variables and functions 738 */ 739 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 740 EXPORT_SYMBOL(boot_option_idle_override); 741 742 /* 743 * We use this if we don't have any better idle routine.. 744 */ 745 void __cpuidle default_idle(void) 746 { 747 raw_safe_halt(); 748 raw_local_irq_disable(); 749 } 750 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) 751 EXPORT_SYMBOL(default_idle); 752 #endif 753 754 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle); 755 756 static bool x86_idle_set(void) 757 { 758 return !!static_call_query(x86_idle); 759 } 760 761 #ifndef CONFIG_SMP 762 static inline void __noreturn play_dead(void) 763 { 764 BUG(); 765 } 766 #endif 767 768 void arch_cpu_idle_enter(void) 769 { 770 tsc_verify_tsc_adjust(false); 771 local_touch_nmi(); 772 } 773 774 void __noreturn arch_cpu_idle_dead(void) 775 { 776 play_dead(); 777 } 778 779 /* 780 * Called from the generic idle code. 781 */ 782 void __cpuidle arch_cpu_idle(void) 783 { 784 static_call(x86_idle)(); 785 } 786 EXPORT_SYMBOL_GPL(arch_cpu_idle); 787 788 #ifdef CONFIG_XEN 789 bool xen_set_default_idle(void) 790 { 791 bool ret = x86_idle_set(); 792 793 static_call_update(x86_idle, default_idle); 794 795 return ret; 796 } 797 #endif 798 799 struct cpumask cpus_stop_mask; 800 801 void __noreturn stop_this_cpu(void *dummy) 802 { 803 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info); 804 unsigned int cpu = smp_processor_id(); 805 806 local_irq_disable(); 807 808 /* 809 * Remove this CPU from the online mask and disable it 810 * unconditionally. This might be redundant in case that the reboot 811 * vector was handled late and stop_other_cpus() sent an NMI. 812 * 813 * According to SDM and APM NMIs can be accepted even after soft 814 * disabling the local APIC. 815 */ 816 set_cpu_online(cpu, false); 817 disable_local_APIC(); 818 mcheck_cpu_clear(c); 819 820 /* 821 * Use wbinvd on processors that support SME. This provides support 822 * for performing a successful kexec when going from SME inactive 823 * to SME active (or vice-versa). The cache must be cleared so that 824 * if there are entries with the same physical address, both with and 825 * without the encryption bit, they don't race each other when flushed 826 * and potentially end up with the wrong entry being committed to 827 * memory. 828 * 829 * Test the CPUID bit directly because the machine might've cleared 830 * X86_FEATURE_SME due to cmdline options. 831 */ 832 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0))) 833 native_wbinvd(); 834 835 /* 836 * This brings a cache line back and dirties it, but 837 * native_stop_other_cpus() will overwrite cpus_stop_mask after it 838 * observed that all CPUs reported stop. This write will invalidate 839 * the related cache line on this CPU. 840 */ 841 cpumask_clear_cpu(cpu, &cpus_stop_mask); 842 843 for (;;) { 844 /* 845 * Use native_halt() so that memory contents don't change 846 * (stack usage and variables) after possibly issuing the 847 * native_wbinvd() above. 848 */ 849 native_halt(); 850 } 851 } 852 853 /* 854 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power 855 * states (local apic timer and TSC stop). 856 * 857 * XXX this function is completely buggered vs RCU and tracing. 858 */ 859 static void amd_e400_idle(void) 860 { 861 /* 862 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E 863 * gets set after static_cpu_has() places have been converted via 864 * alternatives. 865 */ 866 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 867 default_idle(); 868 return; 869 } 870 871 tick_broadcast_enter(); 872 873 default_idle(); 874 875 tick_broadcast_exit(); 876 } 877 878 /* 879 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf 880 * exists and whenever MONITOR/MWAIT extensions are present there is at 881 * least one C1 substate. 882 * 883 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait 884 * is passed to kernel commandline parameter. 885 */ 886 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) 887 { 888 u32 eax, ebx, ecx, edx; 889 890 /* User has disallowed the use of MWAIT. Fallback to HALT */ 891 if (boot_option_idle_override == IDLE_NOMWAIT) 892 return 0; 893 894 /* MWAIT is not supported on this platform. Fallback to HALT */ 895 if (!cpu_has(c, X86_FEATURE_MWAIT)) 896 return 0; 897 898 /* Monitor has a bug. Fallback to HALT */ 899 if (boot_cpu_has_bug(X86_BUG_MONITOR)) 900 return 0; 901 902 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); 903 904 /* 905 * If MWAIT extensions are not available, it is safe to use MWAIT 906 * with EAX=0, ECX=0. 907 */ 908 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) 909 return 1; 910 911 /* 912 * If MWAIT extensions are available, there should be at least one 913 * MWAIT C1 substate present. 914 */ 915 return (edx & MWAIT_C1_SUBSTATE_MASK); 916 } 917 918 /* 919 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT 920 * with interrupts enabled and no flags, which is backwards compatible with the 921 * original MWAIT implementation. 922 */ 923 static __cpuidle void mwait_idle(void) 924 { 925 if (!current_set_polling_and_test()) { 926 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { 927 mb(); /* quirk */ 928 clflush((void *)¤t_thread_info()->flags); 929 mb(); /* quirk */ 930 } 931 932 __monitor((void *)¤t_thread_info()->flags, 0, 0); 933 if (!need_resched()) { 934 __sti_mwait(0, 0); 935 raw_local_irq_disable(); 936 } 937 } 938 __current_clr_polling(); 939 } 940 941 void select_idle_routine(const struct cpuinfo_x86 *c) 942 { 943 #ifdef CONFIG_SMP 944 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) 945 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); 946 #endif 947 if (x86_idle_set() || boot_option_idle_override == IDLE_POLL) 948 return; 949 950 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { 951 pr_info("using AMD E400 aware idle routine\n"); 952 static_call_update(x86_idle, amd_e400_idle); 953 } else if (prefer_mwait_c1_over_halt(c)) { 954 pr_info("using mwait in idle threads\n"); 955 static_call_update(x86_idle, mwait_idle); 956 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) { 957 pr_info("using TDX aware idle routine\n"); 958 static_call_update(x86_idle, tdx_safe_halt); 959 } else 960 static_call_update(x86_idle, default_idle); 961 } 962 963 void amd_e400_c1e_apic_setup(void) 964 { 965 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { 966 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); 967 local_irq_disable(); 968 tick_broadcast_force(); 969 local_irq_enable(); 970 } 971 } 972 973 void __init arch_post_acpi_subsys_init(void) 974 { 975 u32 lo, hi; 976 977 if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) 978 return; 979 980 /* 981 * AMD E400 detection needs to happen after ACPI has been enabled. If 982 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in 983 * MSR_K8_INT_PENDING_MSG. 984 */ 985 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 986 if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) 987 return; 988 989 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); 990 991 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 992 mark_tsc_unstable("TSC halt in AMD C1E"); 993 pr_info("System has AMD C1E enabled\n"); 994 } 995 996 static int __init idle_setup(char *str) 997 { 998 if (!str) 999 return -EINVAL; 1000 1001 if (!strcmp(str, "poll")) { 1002 pr_info("using polling idle threads\n"); 1003 boot_option_idle_override = IDLE_POLL; 1004 cpu_idle_poll_ctrl(true); 1005 } else if (!strcmp(str, "halt")) { 1006 /* 1007 * When the boot option of idle=halt is added, halt is 1008 * forced to be used for CPU idle. In such case CPU C2/C3 1009 * won't be used again. 1010 * To continue to load the CPU idle driver, don't touch 1011 * the boot_option_idle_override. 1012 */ 1013 static_call_update(x86_idle, default_idle); 1014 boot_option_idle_override = IDLE_HALT; 1015 } else if (!strcmp(str, "nomwait")) { 1016 /* 1017 * If the boot option of "idle=nomwait" is added, 1018 * it means that mwait will be disabled for CPU C1/C2/C3 1019 * states. 1020 */ 1021 boot_option_idle_override = IDLE_NOMWAIT; 1022 } else 1023 return -1; 1024 1025 return 0; 1026 } 1027 early_param("idle", idle_setup); 1028 1029 unsigned long arch_align_stack(unsigned long sp) 1030 { 1031 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1032 sp -= get_random_u32_below(8192); 1033 return sp & ~0xf; 1034 } 1035 1036 unsigned long arch_randomize_brk(struct mm_struct *mm) 1037 { 1038 if (mmap_is_ia32()) 1039 return randomize_page(mm->brk, SZ_32M); 1040 1041 return randomize_page(mm->brk, SZ_1G); 1042 } 1043 1044 /* 1045 * Called from fs/proc with a reference on @p to find the function 1046 * which called into schedule(). This needs to be done carefully 1047 * because the task might wake up and we might look at a stack 1048 * changing under us. 1049 */ 1050 unsigned long __get_wchan(struct task_struct *p) 1051 { 1052 struct unwind_state state; 1053 unsigned long addr = 0; 1054 1055 if (!try_get_task_stack(p)) 1056 return 0; 1057 1058 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state); 1059 unwind_next_frame(&state)) { 1060 addr = unwind_get_return_address(&state); 1061 if (!addr) 1062 break; 1063 if (in_sched_functions(addr)) 1064 continue; 1065 break; 1066 } 1067 1068 put_task_stack(p); 1069 1070 return addr; 1071 } 1072 1073 long do_arch_prctl_common(int option, unsigned long arg2) 1074 { 1075 switch (option) { 1076 case ARCH_GET_CPUID: 1077 return get_cpuid_mode(); 1078 case ARCH_SET_CPUID: 1079 return set_cpuid_mode(arg2); 1080 case ARCH_GET_XCOMP_SUPP: 1081 case ARCH_GET_XCOMP_PERM: 1082 case ARCH_REQ_XCOMP_PERM: 1083 case ARCH_GET_XCOMP_GUEST_PERM: 1084 case ARCH_REQ_XCOMP_GUEST_PERM: 1085 return fpu_xstate_prctl(option, arg2); 1086 } 1087 1088 return -EINVAL; 1089 } 1090