1 #include <linux/dma-mapping.h> 2 #include <linux/dmar.h> 3 #include <linux/bootmem.h> 4 #include <linux/pci.h> 5 6 #include <asm/proto.h> 7 #include <asm/dma.h> 8 #include <asm/iommu.h> 9 #include <asm/calgary.h> 10 #include <asm/amd_iommu.h> 11 12 static int forbid_dac __read_mostly; 13 14 struct dma_mapping_ops *dma_ops; 15 EXPORT_SYMBOL(dma_ops); 16 17 static int iommu_sac_force __read_mostly; 18 19 #ifdef CONFIG_IOMMU_DEBUG 20 int panic_on_overflow __read_mostly = 1; 21 int force_iommu __read_mostly = 1; 22 #else 23 int panic_on_overflow __read_mostly = 0; 24 int force_iommu __read_mostly = 0; 25 #endif 26 27 int iommu_merge __read_mostly = 0; 28 29 int no_iommu __read_mostly; 30 /* Set this to 1 if there is a HW IOMMU in the system */ 31 int iommu_detected __read_mostly = 0; 32 33 /* This tells the BIO block layer to assume merging. Default to off 34 because we cannot guarantee merging later. */ 35 int iommu_bio_merge __read_mostly = 0; 36 EXPORT_SYMBOL(iommu_bio_merge); 37 38 dma_addr_t bad_dma_address __read_mostly = 0; 39 EXPORT_SYMBOL(bad_dma_address); 40 41 /* Dummy device used for NULL arguments (normally ISA). Better would 42 be probably a smaller DMA mask, but this is bug-to-bug compatible 43 to older i386. */ 44 struct device fallback_dev = { 45 .bus_id = "fallback device", 46 .coherent_dma_mask = DMA_32BIT_MASK, 47 .dma_mask = &fallback_dev.coherent_dma_mask, 48 }; 49 50 int dma_set_mask(struct device *dev, u64 mask) 51 { 52 if (!dev->dma_mask || !dma_supported(dev, mask)) 53 return -EIO; 54 55 *dev->dma_mask = mask; 56 57 return 0; 58 } 59 EXPORT_SYMBOL(dma_set_mask); 60 61 #ifdef CONFIG_X86_64 62 static __initdata void *dma32_bootmem_ptr; 63 static unsigned long dma32_bootmem_size __initdata = (128ULL<<20); 64 65 static int __init parse_dma32_size_opt(char *p) 66 { 67 if (!p) 68 return -EINVAL; 69 dma32_bootmem_size = memparse(p, &p); 70 return 0; 71 } 72 early_param("dma32_size", parse_dma32_size_opt); 73 74 void __init dma32_reserve_bootmem(void) 75 { 76 unsigned long size, align; 77 if (max_pfn <= MAX_DMA32_PFN) 78 return; 79 80 /* 81 * check aperture_64.c allocate_aperture() for reason about 82 * using 512M as goal 83 */ 84 align = 64ULL<<20; 85 size = round_up(dma32_bootmem_size, align); 86 dma32_bootmem_ptr = __alloc_bootmem_nopanic(size, align, 87 512ULL<<20); 88 if (dma32_bootmem_ptr) 89 dma32_bootmem_size = size; 90 else 91 dma32_bootmem_size = 0; 92 } 93 static void __init dma32_free_bootmem(void) 94 { 95 96 if (max_pfn <= MAX_DMA32_PFN) 97 return; 98 99 if (!dma32_bootmem_ptr) 100 return; 101 102 free_bootmem(__pa(dma32_bootmem_ptr), dma32_bootmem_size); 103 104 dma32_bootmem_ptr = NULL; 105 dma32_bootmem_size = 0; 106 } 107 108 void __init pci_iommu_alloc(void) 109 { 110 /* free the range so iommu could get some range less than 4G */ 111 dma32_free_bootmem(); 112 /* 113 * The order of these functions is important for 114 * fall-back/fail-over reasons 115 */ 116 gart_iommu_hole_init(); 117 118 detect_calgary(); 119 120 detect_intel_iommu(); 121 122 amd_iommu_detect(); 123 124 pci_swiotlb_init(); 125 } 126 #endif 127 128 /* 129 * See <Documentation/x86_64/boot-options.txt> for the iommu kernel parameter 130 * documentation. 131 */ 132 static __init int iommu_setup(char *p) 133 { 134 iommu_merge = 1; 135 136 if (!p) 137 return -EINVAL; 138 139 while (*p) { 140 if (!strncmp(p, "off", 3)) 141 no_iommu = 1; 142 /* gart_parse_options has more force support */ 143 if (!strncmp(p, "force", 5)) 144 force_iommu = 1; 145 if (!strncmp(p, "noforce", 7)) { 146 iommu_merge = 0; 147 force_iommu = 0; 148 } 149 150 if (!strncmp(p, "biomerge", 8)) { 151 iommu_bio_merge = 4096; 152 iommu_merge = 1; 153 force_iommu = 1; 154 } 155 if (!strncmp(p, "panic", 5)) 156 panic_on_overflow = 1; 157 if (!strncmp(p, "nopanic", 7)) 158 panic_on_overflow = 0; 159 if (!strncmp(p, "merge", 5)) { 160 iommu_merge = 1; 161 force_iommu = 1; 162 } 163 if (!strncmp(p, "nomerge", 7)) 164 iommu_merge = 0; 165 if (!strncmp(p, "forcesac", 8)) 166 iommu_sac_force = 1; 167 if (!strncmp(p, "allowdac", 8)) 168 forbid_dac = 0; 169 if (!strncmp(p, "nodac", 5)) 170 forbid_dac = -1; 171 if (!strncmp(p, "usedac", 6)) { 172 forbid_dac = -1; 173 return 1; 174 } 175 #ifdef CONFIG_SWIOTLB 176 if (!strncmp(p, "soft", 4)) 177 swiotlb = 1; 178 #endif 179 180 gart_parse_options(p); 181 182 #ifdef CONFIG_CALGARY_IOMMU 183 if (!strncmp(p, "calgary", 7)) 184 use_calgary = 1; 185 #endif /* CONFIG_CALGARY_IOMMU */ 186 187 p += strcspn(p, ","); 188 if (*p == ',') 189 ++p; 190 } 191 return 0; 192 } 193 early_param("iommu", iommu_setup); 194 195 #ifdef CONFIG_X86_32 196 int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr, 197 dma_addr_t device_addr, size_t size, int flags) 198 { 199 void __iomem *mem_base = NULL; 200 int pages = size >> PAGE_SHIFT; 201 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); 202 203 if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0) 204 goto out; 205 if (!size) 206 goto out; 207 if (dev->dma_mem) 208 goto out; 209 210 /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ 211 212 mem_base = ioremap(bus_addr, size); 213 if (!mem_base) 214 goto out; 215 216 dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); 217 if (!dev->dma_mem) 218 goto out; 219 dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); 220 if (!dev->dma_mem->bitmap) 221 goto free1_out; 222 223 dev->dma_mem->virt_base = mem_base; 224 dev->dma_mem->device_base = device_addr; 225 dev->dma_mem->size = pages; 226 dev->dma_mem->flags = flags; 227 228 if (flags & DMA_MEMORY_MAP) 229 return DMA_MEMORY_MAP; 230 231 return DMA_MEMORY_IO; 232 233 free1_out: 234 kfree(dev->dma_mem); 235 out: 236 if (mem_base) 237 iounmap(mem_base); 238 return 0; 239 } 240 EXPORT_SYMBOL(dma_declare_coherent_memory); 241 242 void dma_release_declared_memory(struct device *dev) 243 { 244 struct dma_coherent_mem *mem = dev->dma_mem; 245 246 if (!mem) 247 return; 248 dev->dma_mem = NULL; 249 iounmap(mem->virt_base); 250 kfree(mem->bitmap); 251 kfree(mem); 252 } 253 EXPORT_SYMBOL(dma_release_declared_memory); 254 255 void *dma_mark_declared_memory_occupied(struct device *dev, 256 dma_addr_t device_addr, size_t size) 257 { 258 struct dma_coherent_mem *mem = dev->dma_mem; 259 int pos, err; 260 int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1); 261 262 pages >>= PAGE_SHIFT; 263 264 if (!mem) 265 return ERR_PTR(-EINVAL); 266 267 pos = (device_addr - mem->device_base) >> PAGE_SHIFT; 268 err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages)); 269 if (err != 0) 270 return ERR_PTR(err); 271 return mem->virt_base + (pos << PAGE_SHIFT); 272 } 273 EXPORT_SYMBOL(dma_mark_declared_memory_occupied); 274 275 static int dma_alloc_from_coherent_mem(struct device *dev, ssize_t size, 276 dma_addr_t *dma_handle, void **ret) 277 { 278 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; 279 int order = get_order(size); 280 281 if (mem) { 282 int page = bitmap_find_free_region(mem->bitmap, mem->size, 283 order); 284 if (page >= 0) { 285 *dma_handle = mem->device_base + (page << PAGE_SHIFT); 286 *ret = mem->virt_base + (page << PAGE_SHIFT); 287 memset(*ret, 0, size); 288 } 289 if (mem->flags & DMA_MEMORY_EXCLUSIVE) 290 *ret = NULL; 291 } 292 return (mem != NULL); 293 } 294 295 static int dma_release_coherent(struct device *dev, int order, void *vaddr) 296 { 297 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; 298 299 if (mem && vaddr >= mem->virt_base && vaddr < 300 (mem->virt_base + (mem->size << PAGE_SHIFT))) { 301 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; 302 303 bitmap_release_region(mem->bitmap, page, order); 304 return 1; 305 } 306 return 0; 307 } 308 #else 309 #define dma_alloc_from_coherent_mem(dev, size, handle, ret) (0) 310 #define dma_release_coherent(dev, order, vaddr) (0) 311 #endif /* CONFIG_X86_32 */ 312 313 int dma_supported(struct device *dev, u64 mask) 314 { 315 struct dma_mapping_ops *ops = get_dma_ops(dev); 316 317 #ifdef CONFIG_PCI 318 if (mask > 0xffffffff && forbid_dac > 0) { 319 dev_info(dev, "PCI: Disallowing DAC for device\n"); 320 return 0; 321 } 322 #endif 323 324 if (ops->dma_supported) 325 return ops->dma_supported(dev, mask); 326 327 /* Copied from i386. Doesn't make much sense, because it will 328 only work for pci_alloc_coherent. 329 The caller just has to use GFP_DMA in this case. */ 330 if (mask < DMA_24BIT_MASK) 331 return 0; 332 333 /* Tell the device to use SAC when IOMMU force is on. This 334 allows the driver to use cheaper accesses in some cases. 335 336 Problem with this is that if we overflow the IOMMU area and 337 return DAC as fallback address the device may not handle it 338 correctly. 339 340 As a special case some controllers have a 39bit address 341 mode that is as efficient as 32bit (aic79xx). Don't force 342 SAC for these. Assume all masks <= 40 bits are of this 343 type. Normally this doesn't make any difference, but gives 344 more gentle handling of IOMMU overflow. */ 345 if (iommu_sac_force && (mask >= DMA_40BIT_MASK)) { 346 dev_info(dev, "Force SAC with mask %Lx\n", mask); 347 return 0; 348 } 349 350 return 1; 351 } 352 EXPORT_SYMBOL(dma_supported); 353 354 /* Allocate DMA memory on node near device */ 355 static noinline struct page * 356 dma_alloc_pages(struct device *dev, gfp_t gfp, unsigned order) 357 { 358 int node; 359 360 node = dev_to_node(dev); 361 362 return alloc_pages_node(node, gfp, order); 363 } 364 365 /* 366 * Allocate memory for a coherent mapping. 367 */ 368 void * 369 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, 370 gfp_t gfp) 371 { 372 struct dma_mapping_ops *ops = get_dma_ops(dev); 373 void *memory = NULL; 374 struct page *page; 375 unsigned long dma_mask = 0; 376 dma_addr_t bus; 377 int noretry = 0; 378 379 /* ignore region specifiers */ 380 gfp &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); 381 382 if (dma_alloc_from_coherent_mem(dev, size, dma_handle, &memory)) 383 return memory; 384 385 if (!dev) { 386 dev = &fallback_dev; 387 gfp |= GFP_DMA; 388 } 389 dma_mask = dev->coherent_dma_mask; 390 if (dma_mask == 0) 391 dma_mask = (gfp & GFP_DMA) ? DMA_24BIT_MASK : DMA_32BIT_MASK; 392 393 /* Device not DMA able */ 394 if (dev->dma_mask == NULL) 395 return NULL; 396 397 /* Don't invoke OOM killer or retry in lower 16MB DMA zone */ 398 if (gfp & __GFP_DMA) 399 noretry = 1; 400 401 #ifdef CONFIG_X86_64 402 /* Why <=? Even when the mask is smaller than 4GB it is often 403 larger than 16MB and in this case we have a chance of 404 finding fitting memory in the next higher zone first. If 405 not retry with true GFP_DMA. -AK */ 406 if (dma_mask <= DMA_32BIT_MASK && !(gfp & GFP_DMA)) { 407 gfp |= GFP_DMA32; 408 if (dma_mask < DMA_32BIT_MASK) 409 noretry = 1; 410 } 411 #endif 412 413 again: 414 page = dma_alloc_pages(dev, 415 noretry ? gfp | __GFP_NORETRY : gfp, get_order(size)); 416 if (page == NULL) 417 return NULL; 418 419 { 420 int high, mmu; 421 bus = page_to_phys(page); 422 memory = page_address(page); 423 high = (bus + size) >= dma_mask; 424 mmu = high; 425 if (force_iommu && !(gfp & GFP_DMA)) 426 mmu = 1; 427 else if (high) { 428 free_pages((unsigned long)memory, 429 get_order(size)); 430 431 /* Don't use the 16MB ZONE_DMA unless absolutely 432 needed. It's better to use remapping first. */ 433 if (dma_mask < DMA_32BIT_MASK && !(gfp & GFP_DMA)) { 434 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 435 goto again; 436 } 437 438 /* Let low level make its own zone decisions */ 439 gfp &= ~(GFP_DMA32|GFP_DMA); 440 441 if (ops->alloc_coherent) 442 return ops->alloc_coherent(dev, size, 443 dma_handle, gfp); 444 return NULL; 445 } 446 447 memset(memory, 0, size); 448 if (!mmu) { 449 *dma_handle = bus; 450 return memory; 451 } 452 } 453 454 if (ops->alloc_coherent) { 455 free_pages((unsigned long)memory, get_order(size)); 456 gfp &= ~(GFP_DMA|GFP_DMA32); 457 return ops->alloc_coherent(dev, size, dma_handle, gfp); 458 } 459 460 if (ops->map_simple) { 461 *dma_handle = ops->map_simple(dev, virt_to_phys(memory), 462 size, 463 PCI_DMA_BIDIRECTIONAL); 464 if (*dma_handle != bad_dma_address) 465 return memory; 466 } 467 468 if (panic_on_overflow) 469 panic("dma_alloc_coherent: IOMMU overflow by %lu bytes\n", 470 (unsigned long)size); 471 free_pages((unsigned long)memory, get_order(size)); 472 return NULL; 473 } 474 EXPORT_SYMBOL(dma_alloc_coherent); 475 476 /* 477 * Unmap coherent memory. 478 * The caller must ensure that the device has finished accessing the mapping. 479 */ 480 void dma_free_coherent(struct device *dev, size_t size, 481 void *vaddr, dma_addr_t bus) 482 { 483 struct dma_mapping_ops *ops = get_dma_ops(dev); 484 485 int order = get_order(size); 486 WARN_ON(irqs_disabled()); /* for portability */ 487 if (dma_release_coherent(dev, order, vaddr)) 488 return; 489 if (ops->unmap_single) 490 ops->unmap_single(dev, bus, size, 0); 491 free_pages((unsigned long)vaddr, order); 492 } 493 EXPORT_SYMBOL(dma_free_coherent); 494 495 static int __init pci_iommu_init(void) 496 { 497 calgary_iommu_init(); 498 499 intel_iommu_init(); 500 501 amd_iommu_init(); 502 503 gart_iommu_init(); 504 505 no_iommu_init(); 506 return 0; 507 } 508 509 void pci_iommu_shutdown(void) 510 { 511 gart_iommu_shutdown(); 512 } 513 /* Must execute after PCI subsystem */ 514 fs_initcall(pci_iommu_init); 515 516 #ifdef CONFIG_PCI 517 /* Many VIA bridges seem to corrupt data for DAC. Disable it here */ 518 519 static __devinit void via_no_dac(struct pci_dev *dev) 520 { 521 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI && forbid_dac == 0) { 522 printk(KERN_INFO "PCI: VIA PCI bridge detected." 523 "Disabling DAC.\n"); 524 forbid_dac = 1; 525 } 526 } 527 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_VIA, PCI_ANY_ID, via_no_dac); 528 #endif 529