1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 5 * Copyright (C) 2011 Don Zickus Red Hat, Inc. 6 * 7 * Pentium III FXSR, SSE support 8 * Gareth Hughes <gareth@valinux.com>, May 2000 9 */ 10 11 /* 12 * Handle hardware traps and faults. 13 */ 14 #include <linux/spinlock.h> 15 #include <linux/kprobes.h> 16 #include <linux/kdebug.h> 17 #include <linux/sched/debug.h> 18 #include <linux/nmi.h> 19 #include <linux/debugfs.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/ratelimit.h> 23 #include <linux/slab.h> 24 #include <linux/export.h> 25 #include <linux/atomic.h> 26 #include <linux/sched/clock.h> 27 28 #if defined(CONFIG_EDAC) 29 #include <linux/edac.h> 30 #endif 31 32 #include <asm/cpu_entry_area.h> 33 #include <asm/traps.h> 34 #include <asm/mach_traps.h> 35 #include <asm/nmi.h> 36 #include <asm/x86_init.h> 37 #include <asm/reboot.h> 38 #include <asm/cache.h> 39 #include <asm/nospec-branch.h> 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/nmi.h> 43 44 struct nmi_desc { 45 raw_spinlock_t lock; 46 struct list_head head; 47 }; 48 49 static struct nmi_desc nmi_desc[NMI_MAX] = 50 { 51 { 52 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), 53 .head = LIST_HEAD_INIT(nmi_desc[0].head), 54 }, 55 { 56 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), 57 .head = LIST_HEAD_INIT(nmi_desc[1].head), 58 }, 59 { 60 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), 61 .head = LIST_HEAD_INIT(nmi_desc[2].head), 62 }, 63 { 64 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), 65 .head = LIST_HEAD_INIT(nmi_desc[3].head), 66 }, 67 68 }; 69 70 struct nmi_stats { 71 unsigned int normal; 72 unsigned int unknown; 73 unsigned int external; 74 unsigned int swallow; 75 }; 76 77 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); 78 79 static int ignore_nmis __read_mostly; 80 81 int unknown_nmi_panic; 82 /* 83 * Prevent NMI reason port (0x61) being accessed simultaneously, can 84 * only be used in NMI handler. 85 */ 86 static DEFINE_RAW_SPINLOCK(nmi_reason_lock); 87 88 static int __init setup_unknown_nmi_panic(char *str) 89 { 90 unknown_nmi_panic = 1; 91 return 1; 92 } 93 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 94 95 #define nmi_to_desc(type) (&nmi_desc[type]) 96 97 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; 98 99 static int __init nmi_warning_debugfs(void) 100 { 101 debugfs_create_u64("nmi_longest_ns", 0644, 102 arch_debugfs_dir, &nmi_longest_ns); 103 return 0; 104 } 105 fs_initcall(nmi_warning_debugfs); 106 107 static void nmi_check_duration(struct nmiaction *action, u64 duration) 108 { 109 u64 whole_msecs = READ_ONCE(action->max_duration); 110 int remainder_ns, decimal_msecs; 111 112 if (duration < nmi_longest_ns || duration < action->max_duration) 113 return; 114 115 action->max_duration = duration; 116 117 remainder_ns = do_div(whole_msecs, (1000 * 1000)); 118 decimal_msecs = remainder_ns / 1000; 119 120 printk_ratelimited(KERN_INFO 121 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", 122 action->handler, whole_msecs, decimal_msecs); 123 } 124 125 static int nmi_handle(unsigned int type, struct pt_regs *regs) 126 { 127 struct nmi_desc *desc = nmi_to_desc(type); 128 struct nmiaction *a; 129 int handled=0; 130 131 rcu_read_lock(); 132 133 /* 134 * NMIs are edge-triggered, which means if you have enough 135 * of them concurrently, you can lose some because only one 136 * can be latched at any given time. Walk the whole list 137 * to handle those situations. 138 */ 139 list_for_each_entry_rcu(a, &desc->head, list) { 140 int thishandled; 141 u64 delta; 142 143 delta = sched_clock(); 144 thishandled = a->handler(type, regs); 145 handled += thishandled; 146 delta = sched_clock() - delta; 147 trace_nmi_handler(a->handler, (int)delta, thishandled); 148 149 nmi_check_duration(a, delta); 150 } 151 152 rcu_read_unlock(); 153 154 /* return total number of NMI events handled */ 155 return handled; 156 } 157 NOKPROBE_SYMBOL(nmi_handle); 158 159 int __register_nmi_handler(unsigned int type, struct nmiaction *action) 160 { 161 struct nmi_desc *desc = nmi_to_desc(type); 162 unsigned long flags; 163 164 if (!action->handler) 165 return -EINVAL; 166 167 raw_spin_lock_irqsave(&desc->lock, flags); 168 169 /* 170 * Indicate if there are multiple registrations on the 171 * internal NMI handler call chains (SERR and IO_CHECK). 172 */ 173 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); 174 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); 175 176 /* 177 * some handlers need to be executed first otherwise a fake 178 * event confuses some handlers (kdump uses this flag) 179 */ 180 if (action->flags & NMI_FLAG_FIRST) 181 list_add_rcu(&action->list, &desc->head); 182 else 183 list_add_tail_rcu(&action->list, &desc->head); 184 185 raw_spin_unlock_irqrestore(&desc->lock, flags); 186 return 0; 187 } 188 EXPORT_SYMBOL(__register_nmi_handler); 189 190 void unregister_nmi_handler(unsigned int type, const char *name) 191 { 192 struct nmi_desc *desc = nmi_to_desc(type); 193 struct nmiaction *n; 194 unsigned long flags; 195 196 raw_spin_lock_irqsave(&desc->lock, flags); 197 198 list_for_each_entry_rcu(n, &desc->head, list) { 199 /* 200 * the name passed in to describe the nmi handler 201 * is used as the lookup key 202 */ 203 if (!strcmp(n->name, name)) { 204 WARN(in_nmi(), 205 "Trying to free NMI (%s) from NMI context!\n", n->name); 206 list_del_rcu(&n->list); 207 break; 208 } 209 } 210 211 raw_spin_unlock_irqrestore(&desc->lock, flags); 212 synchronize_rcu(); 213 } 214 EXPORT_SYMBOL_GPL(unregister_nmi_handler); 215 216 static void 217 pci_serr_error(unsigned char reason, struct pt_regs *regs) 218 { 219 /* check to see if anyone registered against these types of errors */ 220 if (nmi_handle(NMI_SERR, regs)) 221 return; 222 223 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", 224 reason, smp_processor_id()); 225 226 if (panic_on_unrecovered_nmi) 227 nmi_panic(regs, "NMI: Not continuing"); 228 229 pr_emerg("Dazed and confused, but trying to continue\n"); 230 231 /* Clear and disable the PCI SERR error line. */ 232 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; 233 outb(reason, NMI_REASON_PORT); 234 } 235 NOKPROBE_SYMBOL(pci_serr_error); 236 237 static void 238 io_check_error(unsigned char reason, struct pt_regs *regs) 239 { 240 unsigned long i; 241 242 /* check to see if anyone registered against these types of errors */ 243 if (nmi_handle(NMI_IO_CHECK, regs)) 244 return; 245 246 pr_emerg( 247 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", 248 reason, smp_processor_id()); 249 show_regs(regs); 250 251 if (panic_on_io_nmi) { 252 nmi_panic(regs, "NMI IOCK error: Not continuing"); 253 254 /* 255 * If we end up here, it means we have received an NMI while 256 * processing panic(). Simply return without delaying and 257 * re-enabling NMIs. 258 */ 259 return; 260 } 261 262 /* Re-enable the IOCK line, wait for a few seconds */ 263 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; 264 outb(reason, NMI_REASON_PORT); 265 266 i = 20000; 267 while (--i) { 268 touch_nmi_watchdog(); 269 udelay(100); 270 } 271 272 reason &= ~NMI_REASON_CLEAR_IOCHK; 273 outb(reason, NMI_REASON_PORT); 274 } 275 NOKPROBE_SYMBOL(io_check_error); 276 277 static void 278 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 279 { 280 int handled; 281 282 /* 283 * Use 'false' as back-to-back NMIs are dealt with one level up. 284 * Of course this makes having multiple 'unknown' handlers useless 285 * as only the first one is ever run (unless it can actually determine 286 * if it caused the NMI) 287 */ 288 handled = nmi_handle(NMI_UNKNOWN, regs); 289 if (handled) { 290 __this_cpu_add(nmi_stats.unknown, handled); 291 return; 292 } 293 294 __this_cpu_add(nmi_stats.unknown, 1); 295 296 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 297 reason, smp_processor_id()); 298 299 pr_emerg("Do you have a strange power saving mode enabled?\n"); 300 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 301 nmi_panic(regs, "NMI: Not continuing"); 302 303 pr_emerg("Dazed and confused, but trying to continue\n"); 304 } 305 NOKPROBE_SYMBOL(unknown_nmi_error); 306 307 static DEFINE_PER_CPU(bool, swallow_nmi); 308 static DEFINE_PER_CPU(unsigned long, last_nmi_rip); 309 310 static void default_do_nmi(struct pt_regs *regs) 311 { 312 unsigned char reason = 0; 313 int handled; 314 bool b2b = false; 315 316 /* 317 * CPU-specific NMI must be processed before non-CPU-specific 318 * NMI, otherwise we may lose it, because the CPU-specific 319 * NMI can not be detected/processed on other CPUs. 320 */ 321 322 /* 323 * Back-to-back NMIs are interesting because they can either 324 * be two NMI or more than two NMIs (any thing over two is dropped 325 * due to NMI being edge-triggered). If this is the second half 326 * of the back-to-back NMI, assume we dropped things and process 327 * more handlers. Otherwise reset the 'swallow' NMI behaviour 328 */ 329 if (regs->ip == __this_cpu_read(last_nmi_rip)) 330 b2b = true; 331 else 332 __this_cpu_write(swallow_nmi, false); 333 334 __this_cpu_write(last_nmi_rip, regs->ip); 335 336 handled = nmi_handle(NMI_LOCAL, regs); 337 __this_cpu_add(nmi_stats.normal, handled); 338 if (handled) { 339 /* 340 * There are cases when a NMI handler handles multiple 341 * events in the current NMI. One of these events may 342 * be queued for in the next NMI. Because the event is 343 * already handled, the next NMI will result in an unknown 344 * NMI. Instead lets flag this for a potential NMI to 345 * swallow. 346 */ 347 if (handled > 1) 348 __this_cpu_write(swallow_nmi, true); 349 return; 350 } 351 352 /* 353 * Non-CPU-specific NMI: NMI sources can be processed on any CPU. 354 * 355 * Another CPU may be processing panic routines while holding 356 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, 357 * and if so, call its callback directly. If there is no CPU preparing 358 * crash dump, we simply loop here. 359 */ 360 while (!raw_spin_trylock(&nmi_reason_lock)) { 361 run_crash_ipi_callback(regs); 362 cpu_relax(); 363 } 364 365 reason = x86_platform.get_nmi_reason(); 366 367 if (reason & NMI_REASON_MASK) { 368 if (reason & NMI_REASON_SERR) 369 pci_serr_error(reason, regs); 370 else if (reason & NMI_REASON_IOCHK) 371 io_check_error(reason, regs); 372 #ifdef CONFIG_X86_32 373 /* 374 * Reassert NMI in case it became active 375 * meanwhile as it's edge-triggered: 376 */ 377 reassert_nmi(); 378 #endif 379 __this_cpu_add(nmi_stats.external, 1); 380 raw_spin_unlock(&nmi_reason_lock); 381 return; 382 } 383 raw_spin_unlock(&nmi_reason_lock); 384 385 /* 386 * Only one NMI can be latched at a time. To handle 387 * this we may process multiple nmi handlers at once to 388 * cover the case where an NMI is dropped. The downside 389 * to this approach is we may process an NMI prematurely, 390 * while its real NMI is sitting latched. This will cause 391 * an unknown NMI on the next run of the NMI processing. 392 * 393 * We tried to flag that condition above, by setting the 394 * swallow_nmi flag when we process more than one event. 395 * This condition is also only present on the second half 396 * of a back-to-back NMI, so we flag that condition too. 397 * 398 * If both are true, we assume we already processed this 399 * NMI previously and we swallow it. Otherwise we reset 400 * the logic. 401 * 402 * There are scenarios where we may accidentally swallow 403 * a 'real' unknown NMI. For example, while processing 404 * a perf NMI another perf NMI comes in along with a 405 * 'real' unknown NMI. These two NMIs get combined into 406 * one (as descibed above). When the next NMI gets 407 * processed, it will be flagged by perf as handled, but 408 * noone will know that there was a 'real' unknown NMI sent 409 * also. As a result it gets swallowed. Or if the first 410 * perf NMI returns two events handled then the second 411 * NMI will get eaten by the logic below, again losing a 412 * 'real' unknown NMI. But this is the best we can do 413 * for now. 414 */ 415 if (b2b && __this_cpu_read(swallow_nmi)) 416 __this_cpu_add(nmi_stats.swallow, 1); 417 else 418 unknown_nmi_error(reason, regs); 419 } 420 NOKPROBE_SYMBOL(default_do_nmi); 421 422 /* 423 * NMIs can page fault or hit breakpoints which will cause it to lose 424 * its NMI context with the CPU when the breakpoint or page fault does an IRET. 425 * 426 * As a result, NMIs can nest if NMIs get unmasked due an IRET during 427 * NMI processing. On x86_64, the asm glue protects us from nested NMIs 428 * if the outer NMI came from kernel mode, but we can still nest if the 429 * outer NMI came from user mode. 430 * 431 * To handle these nested NMIs, we have three states: 432 * 433 * 1) not running 434 * 2) executing 435 * 3) latched 436 * 437 * When no NMI is in progress, it is in the "not running" state. 438 * When an NMI comes in, it goes into the "executing" state. 439 * Normally, if another NMI is triggered, it does not interrupt 440 * the running NMI and the HW will simply latch it so that when 441 * the first NMI finishes, it will restart the second NMI. 442 * (Note, the latch is binary, thus multiple NMIs triggering, 443 * when one is running, are ignored. Only one NMI is restarted.) 444 * 445 * If an NMI executes an iret, another NMI can preempt it. We do not 446 * want to allow this new NMI to run, but we want to execute it when the 447 * first one finishes. We set the state to "latched", and the exit of 448 * the first NMI will perform a dec_return, if the result is zero 449 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the 450 * dec_return would have set the state to NMI_EXECUTING (what we want it 451 * to be when we are running). In this case, we simply jump back to 452 * rerun the NMI handler again, and restart the 'latched' NMI. 453 * 454 * No trap (breakpoint or page fault) should be hit before nmi_restart, 455 * thus there is no race between the first check of state for NOT_RUNNING 456 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs 457 * at this point. 458 * 459 * In case the NMI takes a page fault, we need to save off the CR2 460 * because the NMI could have preempted another page fault and corrupt 461 * the CR2 that is about to be read. As nested NMIs must be restarted 462 * and they can not take breakpoints or page faults, the update of the 463 * CR2 must be done before converting the nmi state back to NOT_RUNNING. 464 * Otherwise, there would be a race of another nested NMI coming in 465 * after setting state to NOT_RUNNING but before updating the nmi_cr2. 466 */ 467 enum nmi_states { 468 NMI_NOT_RUNNING = 0, 469 NMI_EXECUTING, 470 NMI_LATCHED, 471 }; 472 static DEFINE_PER_CPU(enum nmi_states, nmi_state); 473 static DEFINE_PER_CPU(unsigned long, nmi_cr2); 474 475 #ifdef CONFIG_X86_64 476 /* 477 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without 478 * some care, the inner breakpoint will clobber the outer breakpoint's 479 * stack. 480 * 481 * If a breakpoint is being processed, and the debug stack is being 482 * used, if an NMI comes in and also hits a breakpoint, the stack 483 * pointer will be set to the same fixed address as the breakpoint that 484 * was interrupted, causing that stack to be corrupted. To handle this 485 * case, check if the stack that was interrupted is the debug stack, and 486 * if so, change the IDT so that new breakpoints will use the current 487 * stack and not switch to the fixed address. On return of the NMI, 488 * switch back to the original IDT. 489 */ 490 static DEFINE_PER_CPU(int, update_debug_stack); 491 492 static bool notrace is_debug_stack(unsigned long addr) 493 { 494 struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks); 495 unsigned long top = CEA_ESTACK_TOP(cs, DB); 496 unsigned long bot = CEA_ESTACK_BOT(cs, DB1); 497 498 if (__this_cpu_read(debug_stack_usage)) 499 return true; 500 /* 501 * Note, this covers the guard page between DB and DB1 as well to 502 * avoid two checks. But by all means @addr can never point into 503 * the guard page. 504 */ 505 return addr >= bot && addr < top; 506 } 507 NOKPROBE_SYMBOL(is_debug_stack); 508 #endif 509 510 dotraplinkage notrace void 511 do_nmi(struct pt_regs *regs, long error_code) 512 { 513 if (IS_ENABLED(CONFIG_SMP) && cpu_is_offline(smp_processor_id())) 514 return; 515 516 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { 517 this_cpu_write(nmi_state, NMI_LATCHED); 518 return; 519 } 520 this_cpu_write(nmi_state, NMI_EXECUTING); 521 this_cpu_write(nmi_cr2, read_cr2()); 522 nmi_restart: 523 524 #ifdef CONFIG_X86_64 525 /* 526 * If we interrupted a breakpoint, it is possible that 527 * the nmi handler will have breakpoints too. We need to 528 * change the IDT such that breakpoints that happen here 529 * continue to use the NMI stack. 530 */ 531 if (unlikely(is_debug_stack(regs->sp))) { 532 debug_stack_set_zero(); 533 this_cpu_write(update_debug_stack, 1); 534 } 535 #endif 536 537 nmi_enter(); 538 539 inc_irq_stat(__nmi_count); 540 541 if (!ignore_nmis) 542 default_do_nmi(regs); 543 544 nmi_exit(); 545 546 #ifdef CONFIG_X86_64 547 if (unlikely(this_cpu_read(update_debug_stack))) { 548 debug_stack_reset(); 549 this_cpu_write(update_debug_stack, 0); 550 } 551 #endif 552 553 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) 554 write_cr2(this_cpu_read(nmi_cr2)); 555 if (this_cpu_dec_return(nmi_state)) 556 goto nmi_restart; 557 558 if (user_mode(regs)) 559 mds_user_clear_cpu_buffers(); 560 } 561 NOKPROBE_SYMBOL(do_nmi); 562 563 void stop_nmi(void) 564 { 565 ignore_nmis++; 566 } 567 568 void restart_nmi(void) 569 { 570 ignore_nmis--; 571 } 572 573 /* reset the back-to-back NMI logic */ 574 void local_touch_nmi(void) 575 { 576 __this_cpu_write(last_nmi_rip, 0); 577 } 578 EXPORT_SYMBOL_GPL(local_touch_nmi); 579