1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * Copyright (C) 2011 Don Zickus Red Hat, Inc. 5 * 6 * Pentium III FXSR, SSE support 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 10 /* 11 * Handle hardware traps and faults. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/kprobes.h> 15 #include <linux/kdebug.h> 16 #include <linux/nmi.h> 17 #include <linux/debugfs.h> 18 #include <linux/delay.h> 19 #include <linux/hardirq.h> 20 #include <linux/ratelimit.h> 21 #include <linux/slab.h> 22 #include <linux/export.h> 23 24 #if defined(CONFIG_EDAC) 25 #include <linux/edac.h> 26 #endif 27 28 #include <linux/atomic.h> 29 #include <asm/traps.h> 30 #include <asm/mach_traps.h> 31 #include <asm/nmi.h> 32 #include <asm/x86_init.h> 33 #include <asm/reboot.h> 34 #include <asm/cache.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/nmi.h> 38 39 struct nmi_desc { 40 spinlock_t lock; 41 struct list_head head; 42 }; 43 44 static struct nmi_desc nmi_desc[NMI_MAX] = 45 { 46 { 47 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), 48 .head = LIST_HEAD_INIT(nmi_desc[0].head), 49 }, 50 { 51 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), 52 .head = LIST_HEAD_INIT(nmi_desc[1].head), 53 }, 54 { 55 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), 56 .head = LIST_HEAD_INIT(nmi_desc[2].head), 57 }, 58 { 59 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), 60 .head = LIST_HEAD_INIT(nmi_desc[3].head), 61 }, 62 63 }; 64 65 struct nmi_stats { 66 unsigned int normal; 67 unsigned int unknown; 68 unsigned int external; 69 unsigned int swallow; 70 }; 71 72 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); 73 74 static int ignore_nmis __read_mostly; 75 76 int unknown_nmi_panic; 77 /* 78 * Prevent NMI reason port (0x61) being accessed simultaneously, can 79 * only be used in NMI handler. 80 */ 81 static DEFINE_RAW_SPINLOCK(nmi_reason_lock); 82 83 static int __init setup_unknown_nmi_panic(char *str) 84 { 85 unknown_nmi_panic = 1; 86 return 1; 87 } 88 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 89 90 #define nmi_to_desc(type) (&nmi_desc[type]) 91 92 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; 93 94 static int __init nmi_warning_debugfs(void) 95 { 96 debugfs_create_u64("nmi_longest_ns", 0644, 97 arch_debugfs_dir, &nmi_longest_ns); 98 return 0; 99 } 100 fs_initcall(nmi_warning_debugfs); 101 102 static void nmi_max_handler(struct irq_work *w) 103 { 104 struct nmiaction *a = container_of(w, struct nmiaction, irq_work); 105 int remainder_ns, decimal_msecs; 106 u64 whole_msecs = ACCESS_ONCE(a->max_duration); 107 108 remainder_ns = do_div(whole_msecs, (1000 * 1000)); 109 decimal_msecs = remainder_ns / 1000; 110 111 printk_ratelimited(KERN_INFO 112 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", 113 a->handler, whole_msecs, decimal_msecs); 114 } 115 116 static int nmi_handle(unsigned int type, struct pt_regs *regs) 117 { 118 struct nmi_desc *desc = nmi_to_desc(type); 119 struct nmiaction *a; 120 int handled=0; 121 122 rcu_read_lock(); 123 124 /* 125 * NMIs are edge-triggered, which means if you have enough 126 * of them concurrently, you can lose some because only one 127 * can be latched at any given time. Walk the whole list 128 * to handle those situations. 129 */ 130 list_for_each_entry_rcu(a, &desc->head, list) { 131 int thishandled; 132 u64 delta; 133 134 delta = sched_clock(); 135 thishandled = a->handler(type, regs); 136 handled += thishandled; 137 delta = sched_clock() - delta; 138 trace_nmi_handler(a->handler, (int)delta, thishandled); 139 140 if (delta < nmi_longest_ns || delta < a->max_duration) 141 continue; 142 143 a->max_duration = delta; 144 irq_work_queue(&a->irq_work); 145 } 146 147 rcu_read_unlock(); 148 149 /* return total number of NMI events handled */ 150 return handled; 151 } 152 NOKPROBE_SYMBOL(nmi_handle); 153 154 int __register_nmi_handler(unsigned int type, struct nmiaction *action) 155 { 156 struct nmi_desc *desc = nmi_to_desc(type); 157 unsigned long flags; 158 159 if (!action->handler) 160 return -EINVAL; 161 162 init_irq_work(&action->irq_work, nmi_max_handler); 163 164 spin_lock_irqsave(&desc->lock, flags); 165 166 /* 167 * most handlers of type NMI_UNKNOWN never return because 168 * they just assume the NMI is theirs. Just a sanity check 169 * to manage expectations 170 */ 171 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head)); 172 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); 173 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); 174 175 /* 176 * some handlers need to be executed first otherwise a fake 177 * event confuses some handlers (kdump uses this flag) 178 */ 179 if (action->flags & NMI_FLAG_FIRST) 180 list_add_rcu(&action->list, &desc->head); 181 else 182 list_add_tail_rcu(&action->list, &desc->head); 183 184 spin_unlock_irqrestore(&desc->lock, flags); 185 return 0; 186 } 187 EXPORT_SYMBOL(__register_nmi_handler); 188 189 void unregister_nmi_handler(unsigned int type, const char *name) 190 { 191 struct nmi_desc *desc = nmi_to_desc(type); 192 struct nmiaction *n; 193 unsigned long flags; 194 195 spin_lock_irqsave(&desc->lock, flags); 196 197 list_for_each_entry_rcu(n, &desc->head, list) { 198 /* 199 * the name passed in to describe the nmi handler 200 * is used as the lookup key 201 */ 202 if (!strcmp(n->name, name)) { 203 WARN(in_nmi(), 204 "Trying to free NMI (%s) from NMI context!\n", n->name); 205 list_del_rcu(&n->list); 206 break; 207 } 208 } 209 210 spin_unlock_irqrestore(&desc->lock, flags); 211 synchronize_rcu(); 212 } 213 EXPORT_SYMBOL_GPL(unregister_nmi_handler); 214 215 static void 216 pci_serr_error(unsigned char reason, struct pt_regs *regs) 217 { 218 /* check to see if anyone registered against these types of errors */ 219 if (nmi_handle(NMI_SERR, regs)) 220 return; 221 222 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", 223 reason, smp_processor_id()); 224 225 /* 226 * On some machines, PCI SERR line is used to report memory 227 * errors. EDAC makes use of it. 228 */ 229 #if defined(CONFIG_EDAC) 230 if (edac_handler_set()) { 231 edac_atomic_assert_error(); 232 return; 233 } 234 #endif 235 236 if (panic_on_unrecovered_nmi) 237 nmi_panic(regs, "NMI: Not continuing"); 238 239 pr_emerg("Dazed and confused, but trying to continue\n"); 240 241 /* Clear and disable the PCI SERR error line. */ 242 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; 243 outb(reason, NMI_REASON_PORT); 244 } 245 NOKPROBE_SYMBOL(pci_serr_error); 246 247 static void 248 io_check_error(unsigned char reason, struct pt_regs *regs) 249 { 250 unsigned long i; 251 252 /* check to see if anyone registered against these types of errors */ 253 if (nmi_handle(NMI_IO_CHECK, regs)) 254 return; 255 256 pr_emerg( 257 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", 258 reason, smp_processor_id()); 259 show_regs(regs); 260 261 if (panic_on_io_nmi) { 262 nmi_panic(regs, "NMI IOCK error: Not continuing"); 263 264 /* 265 * If we end up here, it means we have received an NMI while 266 * processing panic(). Simply return without delaying and 267 * re-enabling NMIs. 268 */ 269 return; 270 } 271 272 /* Re-enable the IOCK line, wait for a few seconds */ 273 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; 274 outb(reason, NMI_REASON_PORT); 275 276 i = 20000; 277 while (--i) { 278 touch_nmi_watchdog(); 279 udelay(100); 280 } 281 282 reason &= ~NMI_REASON_CLEAR_IOCHK; 283 outb(reason, NMI_REASON_PORT); 284 } 285 NOKPROBE_SYMBOL(io_check_error); 286 287 static void 288 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 289 { 290 int handled; 291 292 /* 293 * Use 'false' as back-to-back NMIs are dealt with one level up. 294 * Of course this makes having multiple 'unknown' handlers useless 295 * as only the first one is ever run (unless it can actually determine 296 * if it caused the NMI) 297 */ 298 handled = nmi_handle(NMI_UNKNOWN, regs); 299 if (handled) { 300 __this_cpu_add(nmi_stats.unknown, handled); 301 return; 302 } 303 304 __this_cpu_add(nmi_stats.unknown, 1); 305 306 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 307 reason, smp_processor_id()); 308 309 pr_emerg("Do you have a strange power saving mode enabled?\n"); 310 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 311 nmi_panic(regs, "NMI: Not continuing"); 312 313 pr_emerg("Dazed and confused, but trying to continue\n"); 314 } 315 NOKPROBE_SYMBOL(unknown_nmi_error); 316 317 static DEFINE_PER_CPU(bool, swallow_nmi); 318 static DEFINE_PER_CPU(unsigned long, last_nmi_rip); 319 320 static void default_do_nmi(struct pt_regs *regs) 321 { 322 unsigned char reason = 0; 323 int handled; 324 bool b2b = false; 325 326 /* 327 * CPU-specific NMI must be processed before non-CPU-specific 328 * NMI, otherwise we may lose it, because the CPU-specific 329 * NMI can not be detected/processed on other CPUs. 330 */ 331 332 /* 333 * Back-to-back NMIs are interesting because they can either 334 * be two NMI or more than two NMIs (any thing over two is dropped 335 * due to NMI being edge-triggered). If this is the second half 336 * of the back-to-back NMI, assume we dropped things and process 337 * more handlers. Otherwise reset the 'swallow' NMI behaviour 338 */ 339 if (regs->ip == __this_cpu_read(last_nmi_rip)) 340 b2b = true; 341 else 342 __this_cpu_write(swallow_nmi, false); 343 344 __this_cpu_write(last_nmi_rip, regs->ip); 345 346 handled = nmi_handle(NMI_LOCAL, regs); 347 __this_cpu_add(nmi_stats.normal, handled); 348 if (handled) { 349 /* 350 * There are cases when a NMI handler handles multiple 351 * events in the current NMI. One of these events may 352 * be queued for in the next NMI. Because the event is 353 * already handled, the next NMI will result in an unknown 354 * NMI. Instead lets flag this for a potential NMI to 355 * swallow. 356 */ 357 if (handled > 1) 358 __this_cpu_write(swallow_nmi, true); 359 return; 360 } 361 362 /* 363 * Non-CPU-specific NMI: NMI sources can be processed on any CPU. 364 * 365 * Another CPU may be processing panic routines while holding 366 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, 367 * and if so, call its callback directly. If there is no CPU preparing 368 * crash dump, we simply loop here. 369 */ 370 while (!raw_spin_trylock(&nmi_reason_lock)) { 371 run_crash_ipi_callback(regs); 372 cpu_relax(); 373 } 374 375 reason = x86_platform.get_nmi_reason(); 376 377 if (reason & NMI_REASON_MASK) { 378 if (reason & NMI_REASON_SERR) 379 pci_serr_error(reason, regs); 380 else if (reason & NMI_REASON_IOCHK) 381 io_check_error(reason, regs); 382 #ifdef CONFIG_X86_32 383 /* 384 * Reassert NMI in case it became active 385 * meanwhile as it's edge-triggered: 386 */ 387 reassert_nmi(); 388 #endif 389 __this_cpu_add(nmi_stats.external, 1); 390 raw_spin_unlock(&nmi_reason_lock); 391 return; 392 } 393 raw_spin_unlock(&nmi_reason_lock); 394 395 /* 396 * Only one NMI can be latched at a time. To handle 397 * this we may process multiple nmi handlers at once to 398 * cover the case where an NMI is dropped. The downside 399 * to this approach is we may process an NMI prematurely, 400 * while its real NMI is sitting latched. This will cause 401 * an unknown NMI on the next run of the NMI processing. 402 * 403 * We tried to flag that condition above, by setting the 404 * swallow_nmi flag when we process more than one event. 405 * This condition is also only present on the second half 406 * of a back-to-back NMI, so we flag that condition too. 407 * 408 * If both are true, we assume we already processed this 409 * NMI previously and we swallow it. Otherwise we reset 410 * the logic. 411 * 412 * There are scenarios where we may accidentally swallow 413 * a 'real' unknown NMI. For example, while processing 414 * a perf NMI another perf NMI comes in along with a 415 * 'real' unknown NMI. These two NMIs get combined into 416 * one (as descibed above). When the next NMI gets 417 * processed, it will be flagged by perf as handled, but 418 * noone will know that there was a 'real' unknown NMI sent 419 * also. As a result it gets swallowed. Or if the first 420 * perf NMI returns two events handled then the second 421 * NMI will get eaten by the logic below, again losing a 422 * 'real' unknown NMI. But this is the best we can do 423 * for now. 424 */ 425 if (b2b && __this_cpu_read(swallow_nmi)) 426 __this_cpu_add(nmi_stats.swallow, 1); 427 else 428 unknown_nmi_error(reason, regs); 429 } 430 NOKPROBE_SYMBOL(default_do_nmi); 431 432 /* 433 * NMIs can page fault or hit breakpoints which will cause it to lose 434 * its NMI context with the CPU when the breakpoint or page fault does an IRET. 435 * 436 * As a result, NMIs can nest if NMIs get unmasked due an IRET during 437 * NMI processing. On x86_64, the asm glue protects us from nested NMIs 438 * if the outer NMI came from kernel mode, but we can still nest if the 439 * outer NMI came from user mode. 440 * 441 * To handle these nested NMIs, we have three states: 442 * 443 * 1) not running 444 * 2) executing 445 * 3) latched 446 * 447 * When no NMI is in progress, it is in the "not running" state. 448 * When an NMI comes in, it goes into the "executing" state. 449 * Normally, if another NMI is triggered, it does not interrupt 450 * the running NMI and the HW will simply latch it so that when 451 * the first NMI finishes, it will restart the second NMI. 452 * (Note, the latch is binary, thus multiple NMIs triggering, 453 * when one is running, are ignored. Only one NMI is restarted.) 454 * 455 * If an NMI executes an iret, another NMI can preempt it. We do not 456 * want to allow this new NMI to run, but we want to execute it when the 457 * first one finishes. We set the state to "latched", and the exit of 458 * the first NMI will perform a dec_return, if the result is zero 459 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the 460 * dec_return would have set the state to NMI_EXECUTING (what we want it 461 * to be when we are running). In this case, we simply jump back to 462 * rerun the NMI handler again, and restart the 'latched' NMI. 463 * 464 * No trap (breakpoint or page fault) should be hit before nmi_restart, 465 * thus there is no race between the first check of state for NOT_RUNNING 466 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs 467 * at this point. 468 * 469 * In case the NMI takes a page fault, we need to save off the CR2 470 * because the NMI could have preempted another page fault and corrupt 471 * the CR2 that is about to be read. As nested NMIs must be restarted 472 * and they can not take breakpoints or page faults, the update of the 473 * CR2 must be done before converting the nmi state back to NOT_RUNNING. 474 * Otherwise, there would be a race of another nested NMI coming in 475 * after setting state to NOT_RUNNING but before updating the nmi_cr2. 476 */ 477 enum nmi_states { 478 NMI_NOT_RUNNING = 0, 479 NMI_EXECUTING, 480 NMI_LATCHED, 481 }; 482 static DEFINE_PER_CPU(enum nmi_states, nmi_state); 483 static DEFINE_PER_CPU(unsigned long, nmi_cr2); 484 485 #ifdef CONFIG_X86_64 486 /* 487 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without 488 * some care, the inner breakpoint will clobber the outer breakpoint's 489 * stack. 490 * 491 * If a breakpoint is being processed, and the debug stack is being 492 * used, if an NMI comes in and also hits a breakpoint, the stack 493 * pointer will be set to the same fixed address as the breakpoint that 494 * was interrupted, causing that stack to be corrupted. To handle this 495 * case, check if the stack that was interrupted is the debug stack, and 496 * if so, change the IDT so that new breakpoints will use the current 497 * stack and not switch to the fixed address. On return of the NMI, 498 * switch back to the original IDT. 499 */ 500 static DEFINE_PER_CPU(int, update_debug_stack); 501 #endif 502 503 dotraplinkage notrace void 504 do_nmi(struct pt_regs *regs, long error_code) 505 { 506 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { 507 this_cpu_write(nmi_state, NMI_LATCHED); 508 return; 509 } 510 this_cpu_write(nmi_state, NMI_EXECUTING); 511 this_cpu_write(nmi_cr2, read_cr2()); 512 nmi_restart: 513 514 #ifdef CONFIG_X86_64 515 /* 516 * If we interrupted a breakpoint, it is possible that 517 * the nmi handler will have breakpoints too. We need to 518 * change the IDT such that breakpoints that happen here 519 * continue to use the NMI stack. 520 */ 521 if (unlikely(is_debug_stack(regs->sp))) { 522 debug_stack_set_zero(); 523 this_cpu_write(update_debug_stack, 1); 524 } 525 #endif 526 527 nmi_enter(); 528 529 inc_irq_stat(__nmi_count); 530 531 if (!ignore_nmis) 532 default_do_nmi(regs); 533 534 nmi_exit(); 535 536 #ifdef CONFIG_X86_64 537 if (unlikely(this_cpu_read(update_debug_stack))) { 538 debug_stack_reset(); 539 this_cpu_write(update_debug_stack, 0); 540 } 541 #endif 542 543 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) 544 write_cr2(this_cpu_read(nmi_cr2)); 545 if (this_cpu_dec_return(nmi_state)) 546 goto nmi_restart; 547 } 548 NOKPROBE_SYMBOL(do_nmi); 549 550 void stop_nmi(void) 551 { 552 ignore_nmis++; 553 } 554 555 void restart_nmi(void) 556 { 557 ignore_nmis--; 558 } 559 560 /* reset the back-to-back NMI logic */ 561 void local_touch_nmi(void) 562 { 563 __this_cpu_write(last_nmi_rip, 0); 564 } 565 EXPORT_SYMBOL_GPL(local_touch_nmi); 566