1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * Copyright (C) 2011 Don Zickus Red Hat, Inc. 5 * 6 * Pentium III FXSR, SSE support 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 10 /* 11 * Handle hardware traps and faults. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/kprobes.h> 15 #include <linux/kdebug.h> 16 #include <linux/sched/debug.h> 17 #include <linux/nmi.h> 18 #include <linux/debugfs.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/ratelimit.h> 22 #include <linux/slab.h> 23 #include <linux/export.h> 24 #include <linux/sched/clock.h> 25 26 #if defined(CONFIG_EDAC) 27 #include <linux/edac.h> 28 #endif 29 30 #include <linux/atomic.h> 31 #include <asm/traps.h> 32 #include <asm/mach_traps.h> 33 #include <asm/nmi.h> 34 #include <asm/x86_init.h> 35 #include <asm/reboot.h> 36 #include <asm/cache.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/nmi.h> 40 41 struct nmi_desc { 42 raw_spinlock_t lock; 43 struct list_head head; 44 }; 45 46 static struct nmi_desc nmi_desc[NMI_MAX] = 47 { 48 { 49 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), 50 .head = LIST_HEAD_INIT(nmi_desc[0].head), 51 }, 52 { 53 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), 54 .head = LIST_HEAD_INIT(nmi_desc[1].head), 55 }, 56 { 57 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), 58 .head = LIST_HEAD_INIT(nmi_desc[2].head), 59 }, 60 { 61 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), 62 .head = LIST_HEAD_INIT(nmi_desc[3].head), 63 }, 64 65 }; 66 67 struct nmi_stats { 68 unsigned int normal; 69 unsigned int unknown; 70 unsigned int external; 71 unsigned int swallow; 72 }; 73 74 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); 75 76 static int ignore_nmis __read_mostly; 77 78 int unknown_nmi_panic; 79 /* 80 * Prevent NMI reason port (0x61) being accessed simultaneously, can 81 * only be used in NMI handler. 82 */ 83 static DEFINE_RAW_SPINLOCK(nmi_reason_lock); 84 85 static int __init setup_unknown_nmi_panic(char *str) 86 { 87 unknown_nmi_panic = 1; 88 return 1; 89 } 90 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 91 92 #define nmi_to_desc(type) (&nmi_desc[type]) 93 94 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; 95 96 static int __init nmi_warning_debugfs(void) 97 { 98 debugfs_create_u64("nmi_longest_ns", 0644, 99 arch_debugfs_dir, &nmi_longest_ns); 100 return 0; 101 } 102 fs_initcall(nmi_warning_debugfs); 103 104 static void nmi_max_handler(struct irq_work *w) 105 { 106 struct nmiaction *a = container_of(w, struct nmiaction, irq_work); 107 int remainder_ns, decimal_msecs; 108 u64 whole_msecs = READ_ONCE(a->max_duration); 109 110 remainder_ns = do_div(whole_msecs, (1000 * 1000)); 111 decimal_msecs = remainder_ns / 1000; 112 113 printk_ratelimited(KERN_INFO 114 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", 115 a->handler, whole_msecs, decimal_msecs); 116 } 117 118 static int nmi_handle(unsigned int type, struct pt_regs *regs) 119 { 120 struct nmi_desc *desc = nmi_to_desc(type); 121 struct nmiaction *a; 122 int handled=0; 123 124 rcu_read_lock(); 125 126 /* 127 * NMIs are edge-triggered, which means if you have enough 128 * of them concurrently, you can lose some because only one 129 * can be latched at any given time. Walk the whole list 130 * to handle those situations. 131 */ 132 list_for_each_entry_rcu(a, &desc->head, list) { 133 int thishandled; 134 u64 delta; 135 136 delta = sched_clock(); 137 thishandled = a->handler(type, regs); 138 handled += thishandled; 139 delta = sched_clock() - delta; 140 trace_nmi_handler(a->handler, (int)delta, thishandled); 141 142 if (delta < nmi_longest_ns || delta < a->max_duration) 143 continue; 144 145 a->max_duration = delta; 146 irq_work_queue(&a->irq_work); 147 } 148 149 rcu_read_unlock(); 150 151 /* return total number of NMI events handled */ 152 return handled; 153 } 154 NOKPROBE_SYMBOL(nmi_handle); 155 156 int __register_nmi_handler(unsigned int type, struct nmiaction *action) 157 { 158 struct nmi_desc *desc = nmi_to_desc(type); 159 unsigned long flags; 160 161 if (!action->handler) 162 return -EINVAL; 163 164 init_irq_work(&action->irq_work, nmi_max_handler); 165 166 raw_spin_lock_irqsave(&desc->lock, flags); 167 168 /* 169 * Indicate if there are multiple registrations on the 170 * internal NMI handler call chains (SERR and IO_CHECK). 171 */ 172 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); 173 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); 174 175 /* 176 * some handlers need to be executed first otherwise a fake 177 * event confuses some handlers (kdump uses this flag) 178 */ 179 if (action->flags & NMI_FLAG_FIRST) 180 list_add_rcu(&action->list, &desc->head); 181 else 182 list_add_tail_rcu(&action->list, &desc->head); 183 184 raw_spin_unlock_irqrestore(&desc->lock, flags); 185 return 0; 186 } 187 EXPORT_SYMBOL(__register_nmi_handler); 188 189 void unregister_nmi_handler(unsigned int type, const char *name) 190 { 191 struct nmi_desc *desc = nmi_to_desc(type); 192 struct nmiaction *n; 193 unsigned long flags; 194 195 raw_spin_lock_irqsave(&desc->lock, flags); 196 197 list_for_each_entry_rcu(n, &desc->head, list) { 198 /* 199 * the name passed in to describe the nmi handler 200 * is used as the lookup key 201 */ 202 if (!strcmp(n->name, name)) { 203 WARN(in_nmi(), 204 "Trying to free NMI (%s) from NMI context!\n", n->name); 205 list_del_rcu(&n->list); 206 break; 207 } 208 } 209 210 raw_spin_unlock_irqrestore(&desc->lock, flags); 211 synchronize_rcu(); 212 } 213 EXPORT_SYMBOL_GPL(unregister_nmi_handler); 214 215 static void 216 pci_serr_error(unsigned char reason, struct pt_regs *regs) 217 { 218 /* check to see if anyone registered against these types of errors */ 219 if (nmi_handle(NMI_SERR, regs)) 220 return; 221 222 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", 223 reason, smp_processor_id()); 224 225 if (panic_on_unrecovered_nmi) 226 nmi_panic(regs, "NMI: Not continuing"); 227 228 pr_emerg("Dazed and confused, but trying to continue\n"); 229 230 /* Clear and disable the PCI SERR error line. */ 231 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; 232 outb(reason, NMI_REASON_PORT); 233 } 234 NOKPROBE_SYMBOL(pci_serr_error); 235 236 static void 237 io_check_error(unsigned char reason, struct pt_regs *regs) 238 { 239 unsigned long i; 240 241 /* check to see if anyone registered against these types of errors */ 242 if (nmi_handle(NMI_IO_CHECK, regs)) 243 return; 244 245 pr_emerg( 246 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", 247 reason, smp_processor_id()); 248 show_regs(regs); 249 250 if (panic_on_io_nmi) { 251 nmi_panic(regs, "NMI IOCK error: Not continuing"); 252 253 /* 254 * If we end up here, it means we have received an NMI while 255 * processing panic(). Simply return without delaying and 256 * re-enabling NMIs. 257 */ 258 return; 259 } 260 261 /* Re-enable the IOCK line, wait for a few seconds */ 262 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; 263 outb(reason, NMI_REASON_PORT); 264 265 i = 20000; 266 while (--i) { 267 touch_nmi_watchdog(); 268 udelay(100); 269 } 270 271 reason &= ~NMI_REASON_CLEAR_IOCHK; 272 outb(reason, NMI_REASON_PORT); 273 } 274 NOKPROBE_SYMBOL(io_check_error); 275 276 static void 277 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 278 { 279 int handled; 280 281 /* 282 * Use 'false' as back-to-back NMIs are dealt with one level up. 283 * Of course this makes having multiple 'unknown' handlers useless 284 * as only the first one is ever run (unless it can actually determine 285 * if it caused the NMI) 286 */ 287 handled = nmi_handle(NMI_UNKNOWN, regs); 288 if (handled) { 289 __this_cpu_add(nmi_stats.unknown, handled); 290 return; 291 } 292 293 __this_cpu_add(nmi_stats.unknown, 1); 294 295 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 296 reason, smp_processor_id()); 297 298 pr_emerg("Do you have a strange power saving mode enabled?\n"); 299 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 300 nmi_panic(regs, "NMI: Not continuing"); 301 302 pr_emerg("Dazed and confused, but trying to continue\n"); 303 } 304 NOKPROBE_SYMBOL(unknown_nmi_error); 305 306 static DEFINE_PER_CPU(bool, swallow_nmi); 307 static DEFINE_PER_CPU(unsigned long, last_nmi_rip); 308 309 static void default_do_nmi(struct pt_regs *regs) 310 { 311 unsigned char reason = 0; 312 int handled; 313 bool b2b = false; 314 315 /* 316 * CPU-specific NMI must be processed before non-CPU-specific 317 * NMI, otherwise we may lose it, because the CPU-specific 318 * NMI can not be detected/processed on other CPUs. 319 */ 320 321 /* 322 * Back-to-back NMIs are interesting because they can either 323 * be two NMI or more than two NMIs (any thing over two is dropped 324 * due to NMI being edge-triggered). If this is the second half 325 * of the back-to-back NMI, assume we dropped things and process 326 * more handlers. Otherwise reset the 'swallow' NMI behaviour 327 */ 328 if (regs->ip == __this_cpu_read(last_nmi_rip)) 329 b2b = true; 330 else 331 __this_cpu_write(swallow_nmi, false); 332 333 __this_cpu_write(last_nmi_rip, regs->ip); 334 335 handled = nmi_handle(NMI_LOCAL, regs); 336 __this_cpu_add(nmi_stats.normal, handled); 337 if (handled) { 338 /* 339 * There are cases when a NMI handler handles multiple 340 * events in the current NMI. One of these events may 341 * be queued for in the next NMI. Because the event is 342 * already handled, the next NMI will result in an unknown 343 * NMI. Instead lets flag this for a potential NMI to 344 * swallow. 345 */ 346 if (handled > 1) 347 __this_cpu_write(swallow_nmi, true); 348 return; 349 } 350 351 /* 352 * Non-CPU-specific NMI: NMI sources can be processed on any CPU. 353 * 354 * Another CPU may be processing panic routines while holding 355 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, 356 * and if so, call its callback directly. If there is no CPU preparing 357 * crash dump, we simply loop here. 358 */ 359 while (!raw_spin_trylock(&nmi_reason_lock)) { 360 run_crash_ipi_callback(regs); 361 cpu_relax(); 362 } 363 364 reason = x86_platform.get_nmi_reason(); 365 366 if (reason & NMI_REASON_MASK) { 367 if (reason & NMI_REASON_SERR) 368 pci_serr_error(reason, regs); 369 else if (reason & NMI_REASON_IOCHK) 370 io_check_error(reason, regs); 371 #ifdef CONFIG_X86_32 372 /* 373 * Reassert NMI in case it became active 374 * meanwhile as it's edge-triggered: 375 */ 376 reassert_nmi(); 377 #endif 378 __this_cpu_add(nmi_stats.external, 1); 379 raw_spin_unlock(&nmi_reason_lock); 380 return; 381 } 382 raw_spin_unlock(&nmi_reason_lock); 383 384 /* 385 * Only one NMI can be latched at a time. To handle 386 * this we may process multiple nmi handlers at once to 387 * cover the case where an NMI is dropped. The downside 388 * to this approach is we may process an NMI prematurely, 389 * while its real NMI is sitting latched. This will cause 390 * an unknown NMI on the next run of the NMI processing. 391 * 392 * We tried to flag that condition above, by setting the 393 * swallow_nmi flag when we process more than one event. 394 * This condition is also only present on the second half 395 * of a back-to-back NMI, so we flag that condition too. 396 * 397 * If both are true, we assume we already processed this 398 * NMI previously and we swallow it. Otherwise we reset 399 * the logic. 400 * 401 * There are scenarios where we may accidentally swallow 402 * a 'real' unknown NMI. For example, while processing 403 * a perf NMI another perf NMI comes in along with a 404 * 'real' unknown NMI. These two NMIs get combined into 405 * one (as descibed above). When the next NMI gets 406 * processed, it will be flagged by perf as handled, but 407 * noone will know that there was a 'real' unknown NMI sent 408 * also. As a result it gets swallowed. Or if the first 409 * perf NMI returns two events handled then the second 410 * NMI will get eaten by the logic below, again losing a 411 * 'real' unknown NMI. But this is the best we can do 412 * for now. 413 */ 414 if (b2b && __this_cpu_read(swallow_nmi)) 415 __this_cpu_add(nmi_stats.swallow, 1); 416 else 417 unknown_nmi_error(reason, regs); 418 } 419 NOKPROBE_SYMBOL(default_do_nmi); 420 421 /* 422 * NMIs can page fault or hit breakpoints which will cause it to lose 423 * its NMI context with the CPU when the breakpoint or page fault does an IRET. 424 * 425 * As a result, NMIs can nest if NMIs get unmasked due an IRET during 426 * NMI processing. On x86_64, the asm glue protects us from nested NMIs 427 * if the outer NMI came from kernel mode, but we can still nest if the 428 * outer NMI came from user mode. 429 * 430 * To handle these nested NMIs, we have three states: 431 * 432 * 1) not running 433 * 2) executing 434 * 3) latched 435 * 436 * When no NMI is in progress, it is in the "not running" state. 437 * When an NMI comes in, it goes into the "executing" state. 438 * Normally, if another NMI is triggered, it does not interrupt 439 * the running NMI and the HW will simply latch it so that when 440 * the first NMI finishes, it will restart the second NMI. 441 * (Note, the latch is binary, thus multiple NMIs triggering, 442 * when one is running, are ignored. Only one NMI is restarted.) 443 * 444 * If an NMI executes an iret, another NMI can preempt it. We do not 445 * want to allow this new NMI to run, but we want to execute it when the 446 * first one finishes. We set the state to "latched", and the exit of 447 * the first NMI will perform a dec_return, if the result is zero 448 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the 449 * dec_return would have set the state to NMI_EXECUTING (what we want it 450 * to be when we are running). In this case, we simply jump back to 451 * rerun the NMI handler again, and restart the 'latched' NMI. 452 * 453 * No trap (breakpoint or page fault) should be hit before nmi_restart, 454 * thus there is no race between the first check of state for NOT_RUNNING 455 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs 456 * at this point. 457 * 458 * In case the NMI takes a page fault, we need to save off the CR2 459 * because the NMI could have preempted another page fault and corrupt 460 * the CR2 that is about to be read. As nested NMIs must be restarted 461 * and they can not take breakpoints or page faults, the update of the 462 * CR2 must be done before converting the nmi state back to NOT_RUNNING. 463 * Otherwise, there would be a race of another nested NMI coming in 464 * after setting state to NOT_RUNNING but before updating the nmi_cr2. 465 */ 466 enum nmi_states { 467 NMI_NOT_RUNNING = 0, 468 NMI_EXECUTING, 469 NMI_LATCHED, 470 }; 471 static DEFINE_PER_CPU(enum nmi_states, nmi_state); 472 static DEFINE_PER_CPU(unsigned long, nmi_cr2); 473 474 #ifdef CONFIG_X86_64 475 /* 476 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without 477 * some care, the inner breakpoint will clobber the outer breakpoint's 478 * stack. 479 * 480 * If a breakpoint is being processed, and the debug stack is being 481 * used, if an NMI comes in and also hits a breakpoint, the stack 482 * pointer will be set to the same fixed address as the breakpoint that 483 * was interrupted, causing that stack to be corrupted. To handle this 484 * case, check if the stack that was interrupted is the debug stack, and 485 * if so, change the IDT so that new breakpoints will use the current 486 * stack and not switch to the fixed address. On return of the NMI, 487 * switch back to the original IDT. 488 */ 489 static DEFINE_PER_CPU(int, update_debug_stack); 490 #endif 491 492 dotraplinkage notrace void 493 do_nmi(struct pt_regs *regs, long error_code) 494 { 495 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { 496 this_cpu_write(nmi_state, NMI_LATCHED); 497 return; 498 } 499 this_cpu_write(nmi_state, NMI_EXECUTING); 500 this_cpu_write(nmi_cr2, read_cr2()); 501 nmi_restart: 502 503 #ifdef CONFIG_X86_64 504 /* 505 * If we interrupted a breakpoint, it is possible that 506 * the nmi handler will have breakpoints too. We need to 507 * change the IDT such that breakpoints that happen here 508 * continue to use the NMI stack. 509 */ 510 if (unlikely(is_debug_stack(regs->sp))) { 511 debug_stack_set_zero(); 512 this_cpu_write(update_debug_stack, 1); 513 } 514 #endif 515 516 nmi_enter(); 517 518 inc_irq_stat(__nmi_count); 519 520 if (!ignore_nmis) 521 default_do_nmi(regs); 522 523 nmi_exit(); 524 525 #ifdef CONFIG_X86_64 526 if (unlikely(this_cpu_read(update_debug_stack))) { 527 debug_stack_reset(); 528 this_cpu_write(update_debug_stack, 0); 529 } 530 #endif 531 532 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) 533 write_cr2(this_cpu_read(nmi_cr2)); 534 if (this_cpu_dec_return(nmi_state)) 535 goto nmi_restart; 536 } 537 NOKPROBE_SYMBOL(do_nmi); 538 539 void stop_nmi(void) 540 { 541 ignore_nmis++; 542 } 543 544 void restart_nmi(void) 545 { 546 ignore_nmis--; 547 } 548 549 /* reset the back-to-back NMI logic */ 550 void local_touch_nmi(void) 551 { 552 __this_cpu_write(last_nmi_rip, 0); 553 } 554 EXPORT_SYMBOL_GPL(local_touch_nmi); 555