xref: /openbmc/linux/arch/x86/kernel/nmi.c (revision e23feb16)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/slab.h>
21 #include <linux/export.h>
22 
23 #if defined(CONFIG_EDAC)
24 #include <linux/edac.h>
25 #endif
26 
27 #include <linux/atomic.h>
28 #include <asm/traps.h>
29 #include <asm/mach_traps.h>
30 #include <asm/nmi.h>
31 #include <asm/x86_init.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/nmi.h>
35 
36 struct nmi_desc {
37 	spinlock_t lock;
38 	struct list_head head;
39 };
40 
41 static struct nmi_desc nmi_desc[NMI_MAX] =
42 {
43 	{
44 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
45 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
46 	},
47 	{
48 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
49 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
50 	},
51 	{
52 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
53 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
54 	},
55 	{
56 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
57 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
58 	},
59 
60 };
61 
62 struct nmi_stats {
63 	unsigned int normal;
64 	unsigned int unknown;
65 	unsigned int external;
66 	unsigned int swallow;
67 };
68 
69 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
70 
71 static int ignore_nmis;
72 
73 int unknown_nmi_panic;
74 /*
75  * Prevent NMI reason port (0x61) being accessed simultaneously, can
76  * only be used in NMI handler.
77  */
78 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
79 
80 static int __init setup_unknown_nmi_panic(char *str)
81 {
82 	unknown_nmi_panic = 1;
83 	return 1;
84 }
85 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
86 
87 #define nmi_to_desc(type) (&nmi_desc[type])
88 
89 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
90 static int __init nmi_warning_debugfs(void)
91 {
92 	debugfs_create_u64("nmi_longest_ns", 0644,
93 			arch_debugfs_dir, &nmi_longest_ns);
94 	return 0;
95 }
96 fs_initcall(nmi_warning_debugfs);
97 
98 static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
99 {
100 	struct nmi_desc *desc = nmi_to_desc(type);
101 	struct nmiaction *a;
102 	int handled=0;
103 
104 	rcu_read_lock();
105 
106 	/*
107 	 * NMIs are edge-triggered, which means if you have enough
108 	 * of them concurrently, you can lose some because only one
109 	 * can be latched at any given time.  Walk the whole list
110 	 * to handle those situations.
111 	 */
112 	list_for_each_entry_rcu(a, &desc->head, list) {
113 		u64 before, delta, whole_msecs;
114 		int remainder_ns, decimal_msecs, thishandled;
115 
116 		before = local_clock();
117 		thishandled = a->handler(type, regs);
118 		handled += thishandled;
119 		delta = local_clock() - before;
120 		trace_nmi_handler(a->handler, (int)delta, thishandled);
121 
122 		if (delta < nmi_longest_ns)
123 			continue;
124 
125 		nmi_longest_ns = delta;
126 		whole_msecs = delta;
127 		remainder_ns = do_div(whole_msecs, (1000 * 1000));
128 		decimal_msecs = remainder_ns / 1000;
129 		printk_ratelimited(KERN_INFO
130 			"INFO: NMI handler (%ps) took too long to run: "
131 			"%lld.%03d msecs\n", a->handler, whole_msecs,
132 			decimal_msecs);
133 	}
134 
135 	rcu_read_unlock();
136 
137 	/* return total number of NMI events handled */
138 	return handled;
139 }
140 
141 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
142 {
143 	struct nmi_desc *desc = nmi_to_desc(type);
144 	unsigned long flags;
145 
146 	if (!action->handler)
147 		return -EINVAL;
148 
149 	spin_lock_irqsave(&desc->lock, flags);
150 
151 	/*
152 	 * most handlers of type NMI_UNKNOWN never return because
153 	 * they just assume the NMI is theirs.  Just a sanity check
154 	 * to manage expectations
155 	 */
156 	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
157 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
158 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
159 
160 	/*
161 	 * some handlers need to be executed first otherwise a fake
162 	 * event confuses some handlers (kdump uses this flag)
163 	 */
164 	if (action->flags & NMI_FLAG_FIRST)
165 		list_add_rcu(&action->list, &desc->head);
166 	else
167 		list_add_tail_rcu(&action->list, &desc->head);
168 
169 	spin_unlock_irqrestore(&desc->lock, flags);
170 	return 0;
171 }
172 EXPORT_SYMBOL(__register_nmi_handler);
173 
174 void unregister_nmi_handler(unsigned int type, const char *name)
175 {
176 	struct nmi_desc *desc = nmi_to_desc(type);
177 	struct nmiaction *n;
178 	unsigned long flags;
179 
180 	spin_lock_irqsave(&desc->lock, flags);
181 
182 	list_for_each_entry_rcu(n, &desc->head, list) {
183 		/*
184 		 * the name passed in to describe the nmi handler
185 		 * is used as the lookup key
186 		 */
187 		if (!strcmp(n->name, name)) {
188 			WARN(in_nmi(),
189 				"Trying to free NMI (%s) from NMI context!\n", n->name);
190 			list_del_rcu(&n->list);
191 			break;
192 		}
193 	}
194 
195 	spin_unlock_irqrestore(&desc->lock, flags);
196 	synchronize_rcu();
197 }
198 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
199 
200 static __kprobes void
201 pci_serr_error(unsigned char reason, struct pt_regs *regs)
202 {
203 	/* check to see if anyone registered against these types of errors */
204 	if (nmi_handle(NMI_SERR, regs, false))
205 		return;
206 
207 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
208 		 reason, smp_processor_id());
209 
210 	/*
211 	 * On some machines, PCI SERR line is used to report memory
212 	 * errors. EDAC makes use of it.
213 	 */
214 #if defined(CONFIG_EDAC)
215 	if (edac_handler_set()) {
216 		edac_atomic_assert_error();
217 		return;
218 	}
219 #endif
220 
221 	if (panic_on_unrecovered_nmi)
222 		panic("NMI: Not continuing");
223 
224 	pr_emerg("Dazed and confused, but trying to continue\n");
225 
226 	/* Clear and disable the PCI SERR error line. */
227 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
228 	outb(reason, NMI_REASON_PORT);
229 }
230 
231 static __kprobes void
232 io_check_error(unsigned char reason, struct pt_regs *regs)
233 {
234 	unsigned long i;
235 
236 	/* check to see if anyone registered against these types of errors */
237 	if (nmi_handle(NMI_IO_CHECK, regs, false))
238 		return;
239 
240 	pr_emerg(
241 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
242 		 reason, smp_processor_id());
243 	show_regs(regs);
244 
245 	if (panic_on_io_nmi)
246 		panic("NMI IOCK error: Not continuing");
247 
248 	/* Re-enable the IOCK line, wait for a few seconds */
249 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
250 	outb(reason, NMI_REASON_PORT);
251 
252 	i = 20000;
253 	while (--i) {
254 		touch_nmi_watchdog();
255 		udelay(100);
256 	}
257 
258 	reason &= ~NMI_REASON_CLEAR_IOCHK;
259 	outb(reason, NMI_REASON_PORT);
260 }
261 
262 static __kprobes void
263 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
264 {
265 	int handled;
266 
267 	/*
268 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
269 	 * Of course this makes having multiple 'unknown' handlers useless
270 	 * as only the first one is ever run (unless it can actually determine
271 	 * if it caused the NMI)
272 	 */
273 	handled = nmi_handle(NMI_UNKNOWN, regs, false);
274 	if (handled) {
275 		__this_cpu_add(nmi_stats.unknown, handled);
276 		return;
277 	}
278 
279 	__this_cpu_add(nmi_stats.unknown, 1);
280 
281 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
282 		 reason, smp_processor_id());
283 
284 	pr_emerg("Do you have a strange power saving mode enabled?\n");
285 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
286 		panic("NMI: Not continuing");
287 
288 	pr_emerg("Dazed and confused, but trying to continue\n");
289 }
290 
291 static DEFINE_PER_CPU(bool, swallow_nmi);
292 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
293 
294 static __kprobes void default_do_nmi(struct pt_regs *regs)
295 {
296 	unsigned char reason = 0;
297 	int handled;
298 	bool b2b = false;
299 
300 	/*
301 	 * CPU-specific NMI must be processed before non-CPU-specific
302 	 * NMI, otherwise we may lose it, because the CPU-specific
303 	 * NMI can not be detected/processed on other CPUs.
304 	 */
305 
306 	/*
307 	 * Back-to-back NMIs are interesting because they can either
308 	 * be two NMI or more than two NMIs (any thing over two is dropped
309 	 * due to NMI being edge-triggered).  If this is the second half
310 	 * of the back-to-back NMI, assume we dropped things and process
311 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
312 	 */
313 	if (regs->ip == __this_cpu_read(last_nmi_rip))
314 		b2b = true;
315 	else
316 		__this_cpu_write(swallow_nmi, false);
317 
318 	__this_cpu_write(last_nmi_rip, regs->ip);
319 
320 	handled = nmi_handle(NMI_LOCAL, regs, b2b);
321 	__this_cpu_add(nmi_stats.normal, handled);
322 	if (handled) {
323 		/*
324 		 * There are cases when a NMI handler handles multiple
325 		 * events in the current NMI.  One of these events may
326 		 * be queued for in the next NMI.  Because the event is
327 		 * already handled, the next NMI will result in an unknown
328 		 * NMI.  Instead lets flag this for a potential NMI to
329 		 * swallow.
330 		 */
331 		if (handled > 1)
332 			__this_cpu_write(swallow_nmi, true);
333 		return;
334 	}
335 
336 	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
337 	raw_spin_lock(&nmi_reason_lock);
338 	reason = x86_platform.get_nmi_reason();
339 
340 	if (reason & NMI_REASON_MASK) {
341 		if (reason & NMI_REASON_SERR)
342 			pci_serr_error(reason, regs);
343 		else if (reason & NMI_REASON_IOCHK)
344 			io_check_error(reason, regs);
345 #ifdef CONFIG_X86_32
346 		/*
347 		 * Reassert NMI in case it became active
348 		 * meanwhile as it's edge-triggered:
349 		 */
350 		reassert_nmi();
351 #endif
352 		__this_cpu_add(nmi_stats.external, 1);
353 		raw_spin_unlock(&nmi_reason_lock);
354 		return;
355 	}
356 	raw_spin_unlock(&nmi_reason_lock);
357 
358 	/*
359 	 * Only one NMI can be latched at a time.  To handle
360 	 * this we may process multiple nmi handlers at once to
361 	 * cover the case where an NMI is dropped.  The downside
362 	 * to this approach is we may process an NMI prematurely,
363 	 * while its real NMI is sitting latched.  This will cause
364 	 * an unknown NMI on the next run of the NMI processing.
365 	 *
366 	 * We tried to flag that condition above, by setting the
367 	 * swallow_nmi flag when we process more than one event.
368 	 * This condition is also only present on the second half
369 	 * of a back-to-back NMI, so we flag that condition too.
370 	 *
371 	 * If both are true, we assume we already processed this
372 	 * NMI previously and we swallow it.  Otherwise we reset
373 	 * the logic.
374 	 *
375 	 * There are scenarios where we may accidentally swallow
376 	 * a 'real' unknown NMI.  For example, while processing
377 	 * a perf NMI another perf NMI comes in along with a
378 	 * 'real' unknown NMI.  These two NMIs get combined into
379 	 * one (as descibed above).  When the next NMI gets
380 	 * processed, it will be flagged by perf as handled, but
381 	 * noone will know that there was a 'real' unknown NMI sent
382 	 * also.  As a result it gets swallowed.  Or if the first
383 	 * perf NMI returns two events handled then the second
384 	 * NMI will get eaten by the logic below, again losing a
385 	 * 'real' unknown NMI.  But this is the best we can do
386 	 * for now.
387 	 */
388 	if (b2b && __this_cpu_read(swallow_nmi))
389 		__this_cpu_add(nmi_stats.swallow, 1);
390 	else
391 		unknown_nmi_error(reason, regs);
392 }
393 
394 /*
395  * NMIs can hit breakpoints which will cause it to lose its
396  * NMI context with the CPU when the breakpoint does an iret.
397  */
398 #ifdef CONFIG_X86_32
399 /*
400  * For i386, NMIs use the same stack as the kernel, and we can
401  * add a workaround to the iret problem in C (preventing nested
402  * NMIs if an NMI takes a trap). Simply have 3 states the NMI
403  * can be in:
404  *
405  *  1) not running
406  *  2) executing
407  *  3) latched
408  *
409  * When no NMI is in progress, it is in the "not running" state.
410  * When an NMI comes in, it goes into the "executing" state.
411  * Normally, if another NMI is triggered, it does not interrupt
412  * the running NMI and the HW will simply latch it so that when
413  * the first NMI finishes, it will restart the second NMI.
414  * (Note, the latch is binary, thus multiple NMIs triggering,
415  *  when one is running, are ignored. Only one NMI is restarted.)
416  *
417  * If an NMI hits a breakpoint that executes an iret, another
418  * NMI can preempt it. We do not want to allow this new NMI
419  * to run, but we want to execute it when the first one finishes.
420  * We set the state to "latched", and the exit of the first NMI will
421  * perform a dec_return, if the result is zero (NOT_RUNNING), then
422  * it will simply exit the NMI handler. If not, the dec_return
423  * would have set the state to NMI_EXECUTING (what we want it to
424  * be when we are running). In this case, we simply jump back
425  * to rerun the NMI handler again, and restart the 'latched' NMI.
426  *
427  * No trap (breakpoint or page fault) should be hit before nmi_restart,
428  * thus there is no race between the first check of state for NOT_RUNNING
429  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
430  * at this point.
431  *
432  * In case the NMI takes a page fault, we need to save off the CR2
433  * because the NMI could have preempted another page fault and corrupt
434  * the CR2 that is about to be read. As nested NMIs must be restarted
435  * and they can not take breakpoints or page faults, the update of the
436  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
437  * Otherwise, there would be a race of another nested NMI coming in
438  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
439  */
440 enum nmi_states {
441 	NMI_NOT_RUNNING = 0,
442 	NMI_EXECUTING,
443 	NMI_LATCHED,
444 };
445 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
446 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
447 
448 #define nmi_nesting_preprocess(regs)					\
449 	do {								\
450 		if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {	\
451 			this_cpu_write(nmi_state, NMI_LATCHED);		\
452 			return;						\
453 		}							\
454 		this_cpu_write(nmi_state, NMI_EXECUTING);		\
455 		this_cpu_write(nmi_cr2, read_cr2());			\
456 	} while (0);							\
457 	nmi_restart:
458 
459 #define nmi_nesting_postprocess()					\
460 	do {								\
461 		if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))	\
462 			write_cr2(this_cpu_read(nmi_cr2));		\
463 		if (this_cpu_dec_return(nmi_state))			\
464 			goto nmi_restart;				\
465 	} while (0)
466 #else /* x86_64 */
467 /*
468  * In x86_64 things are a bit more difficult. This has the same problem
469  * where an NMI hitting a breakpoint that calls iret will remove the
470  * NMI context, allowing a nested NMI to enter. What makes this more
471  * difficult is that both NMIs and breakpoints have their own stack.
472  * When a new NMI or breakpoint is executed, the stack is set to a fixed
473  * point. If an NMI is nested, it will have its stack set at that same
474  * fixed address that the first NMI had, and will start corrupting the
475  * stack. This is handled in entry_64.S, but the same problem exists with
476  * the breakpoint stack.
477  *
478  * If a breakpoint is being processed, and the debug stack is being used,
479  * if an NMI comes in and also hits a breakpoint, the stack pointer
480  * will be set to the same fixed address as the breakpoint that was
481  * interrupted, causing that stack to be corrupted. To handle this case,
482  * check if the stack that was interrupted is the debug stack, and if
483  * so, change the IDT so that new breakpoints will use the current stack
484  * and not switch to the fixed address. On return of the NMI, switch back
485  * to the original IDT.
486  */
487 static DEFINE_PER_CPU(int, update_debug_stack);
488 
489 static inline void nmi_nesting_preprocess(struct pt_regs *regs)
490 {
491 	/*
492 	 * If we interrupted a breakpoint, it is possible that
493 	 * the nmi handler will have breakpoints too. We need to
494 	 * change the IDT such that breakpoints that happen here
495 	 * continue to use the NMI stack.
496 	 */
497 	if (unlikely(is_debug_stack(regs->sp))) {
498 		debug_stack_set_zero();
499 		this_cpu_write(update_debug_stack, 1);
500 	}
501 }
502 
503 static inline void nmi_nesting_postprocess(void)
504 {
505 	if (unlikely(this_cpu_read(update_debug_stack))) {
506 		debug_stack_reset();
507 		this_cpu_write(update_debug_stack, 0);
508 	}
509 }
510 #endif
511 
512 dotraplinkage notrace __kprobes void
513 do_nmi(struct pt_regs *regs, long error_code)
514 {
515 	nmi_nesting_preprocess(regs);
516 
517 	nmi_enter();
518 
519 	inc_irq_stat(__nmi_count);
520 
521 	if (!ignore_nmis)
522 		default_do_nmi(regs);
523 
524 	nmi_exit();
525 
526 	/* On i386, may loop back to preprocess */
527 	nmi_nesting_postprocess();
528 }
529 
530 void stop_nmi(void)
531 {
532 	ignore_nmis++;
533 }
534 
535 void restart_nmi(void)
536 {
537 	ignore_nmis--;
538 }
539 
540 /* reset the back-to-back NMI logic */
541 void local_touch_nmi(void)
542 {
543 	__this_cpu_write(last_nmi_rip, 0);
544 }
545 EXPORT_SYMBOL_GPL(local_touch_nmi);
546