xref: /openbmc/linux/arch/x86/kernel/nmi.c (revision d2999e1b)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/slab.h>
21 #include <linux/export.h>
22 
23 #if defined(CONFIG_EDAC)
24 #include <linux/edac.h>
25 #endif
26 
27 #include <linux/atomic.h>
28 #include <asm/traps.h>
29 #include <asm/mach_traps.h>
30 #include <asm/nmi.h>
31 #include <asm/x86_init.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/nmi.h>
35 
36 struct nmi_desc {
37 	spinlock_t lock;
38 	struct list_head head;
39 };
40 
41 static struct nmi_desc nmi_desc[NMI_MAX] =
42 {
43 	{
44 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
45 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
46 	},
47 	{
48 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
49 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
50 	},
51 	{
52 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
53 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
54 	},
55 	{
56 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
57 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
58 	},
59 
60 };
61 
62 struct nmi_stats {
63 	unsigned int normal;
64 	unsigned int unknown;
65 	unsigned int external;
66 	unsigned int swallow;
67 };
68 
69 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
70 
71 static int ignore_nmis;
72 
73 int unknown_nmi_panic;
74 /*
75  * Prevent NMI reason port (0x61) being accessed simultaneously, can
76  * only be used in NMI handler.
77  */
78 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
79 
80 static int __init setup_unknown_nmi_panic(char *str)
81 {
82 	unknown_nmi_panic = 1;
83 	return 1;
84 }
85 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
86 
87 #define nmi_to_desc(type) (&nmi_desc[type])
88 
89 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
90 
91 static int __init nmi_warning_debugfs(void)
92 {
93 	debugfs_create_u64("nmi_longest_ns", 0644,
94 			arch_debugfs_dir, &nmi_longest_ns);
95 	return 0;
96 }
97 fs_initcall(nmi_warning_debugfs);
98 
99 static void nmi_max_handler(struct irq_work *w)
100 {
101 	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
102 	int remainder_ns, decimal_msecs;
103 	u64 whole_msecs = ACCESS_ONCE(a->max_duration);
104 
105 	remainder_ns = do_div(whole_msecs, (1000 * 1000));
106 	decimal_msecs = remainder_ns / 1000;
107 
108 	printk_ratelimited(KERN_INFO
109 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
110 		a->handler, whole_msecs, decimal_msecs);
111 }
112 
113 static int nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
114 {
115 	struct nmi_desc *desc = nmi_to_desc(type);
116 	struct nmiaction *a;
117 	int handled=0;
118 
119 	rcu_read_lock();
120 
121 	/*
122 	 * NMIs are edge-triggered, which means if you have enough
123 	 * of them concurrently, you can lose some because only one
124 	 * can be latched at any given time.  Walk the whole list
125 	 * to handle those situations.
126 	 */
127 	list_for_each_entry_rcu(a, &desc->head, list) {
128 		int thishandled;
129 		u64 delta;
130 
131 		delta = sched_clock();
132 		thishandled = a->handler(type, regs);
133 		handled += thishandled;
134 		delta = sched_clock() - delta;
135 		trace_nmi_handler(a->handler, (int)delta, thishandled);
136 
137 		if (delta < nmi_longest_ns || delta < a->max_duration)
138 			continue;
139 
140 		a->max_duration = delta;
141 		irq_work_queue(&a->irq_work);
142 	}
143 
144 	rcu_read_unlock();
145 
146 	/* return total number of NMI events handled */
147 	return handled;
148 }
149 NOKPROBE_SYMBOL(nmi_handle);
150 
151 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
152 {
153 	struct nmi_desc *desc = nmi_to_desc(type);
154 	unsigned long flags;
155 
156 	if (!action->handler)
157 		return -EINVAL;
158 
159 	init_irq_work(&action->irq_work, nmi_max_handler);
160 
161 	spin_lock_irqsave(&desc->lock, flags);
162 
163 	/*
164 	 * most handlers of type NMI_UNKNOWN never return because
165 	 * they just assume the NMI is theirs.  Just a sanity check
166 	 * to manage expectations
167 	 */
168 	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
169 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
170 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
171 
172 	/*
173 	 * some handlers need to be executed first otherwise a fake
174 	 * event confuses some handlers (kdump uses this flag)
175 	 */
176 	if (action->flags & NMI_FLAG_FIRST)
177 		list_add_rcu(&action->list, &desc->head);
178 	else
179 		list_add_tail_rcu(&action->list, &desc->head);
180 
181 	spin_unlock_irqrestore(&desc->lock, flags);
182 	return 0;
183 }
184 EXPORT_SYMBOL(__register_nmi_handler);
185 
186 void unregister_nmi_handler(unsigned int type, const char *name)
187 {
188 	struct nmi_desc *desc = nmi_to_desc(type);
189 	struct nmiaction *n;
190 	unsigned long flags;
191 
192 	spin_lock_irqsave(&desc->lock, flags);
193 
194 	list_for_each_entry_rcu(n, &desc->head, list) {
195 		/*
196 		 * the name passed in to describe the nmi handler
197 		 * is used as the lookup key
198 		 */
199 		if (!strcmp(n->name, name)) {
200 			WARN(in_nmi(),
201 				"Trying to free NMI (%s) from NMI context!\n", n->name);
202 			list_del_rcu(&n->list);
203 			break;
204 		}
205 	}
206 
207 	spin_unlock_irqrestore(&desc->lock, flags);
208 	synchronize_rcu();
209 }
210 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
211 
212 static void
213 pci_serr_error(unsigned char reason, struct pt_regs *regs)
214 {
215 	/* check to see if anyone registered against these types of errors */
216 	if (nmi_handle(NMI_SERR, regs, false))
217 		return;
218 
219 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
220 		 reason, smp_processor_id());
221 
222 	/*
223 	 * On some machines, PCI SERR line is used to report memory
224 	 * errors. EDAC makes use of it.
225 	 */
226 #if defined(CONFIG_EDAC)
227 	if (edac_handler_set()) {
228 		edac_atomic_assert_error();
229 		return;
230 	}
231 #endif
232 
233 	if (panic_on_unrecovered_nmi)
234 		panic("NMI: Not continuing");
235 
236 	pr_emerg("Dazed and confused, but trying to continue\n");
237 
238 	/* Clear and disable the PCI SERR error line. */
239 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
240 	outb(reason, NMI_REASON_PORT);
241 }
242 NOKPROBE_SYMBOL(pci_serr_error);
243 
244 static void
245 io_check_error(unsigned char reason, struct pt_regs *regs)
246 {
247 	unsigned long i;
248 
249 	/* check to see if anyone registered against these types of errors */
250 	if (nmi_handle(NMI_IO_CHECK, regs, false))
251 		return;
252 
253 	pr_emerg(
254 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
255 		 reason, smp_processor_id());
256 	show_regs(regs);
257 
258 	if (panic_on_io_nmi)
259 		panic("NMI IOCK error: Not continuing");
260 
261 	/* Re-enable the IOCK line, wait for a few seconds */
262 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
263 	outb(reason, NMI_REASON_PORT);
264 
265 	i = 20000;
266 	while (--i) {
267 		touch_nmi_watchdog();
268 		udelay(100);
269 	}
270 
271 	reason &= ~NMI_REASON_CLEAR_IOCHK;
272 	outb(reason, NMI_REASON_PORT);
273 }
274 NOKPROBE_SYMBOL(io_check_error);
275 
276 static void
277 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
278 {
279 	int handled;
280 
281 	/*
282 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
283 	 * Of course this makes having multiple 'unknown' handlers useless
284 	 * as only the first one is ever run (unless it can actually determine
285 	 * if it caused the NMI)
286 	 */
287 	handled = nmi_handle(NMI_UNKNOWN, regs, false);
288 	if (handled) {
289 		__this_cpu_add(nmi_stats.unknown, handled);
290 		return;
291 	}
292 
293 	__this_cpu_add(nmi_stats.unknown, 1);
294 
295 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
296 		 reason, smp_processor_id());
297 
298 	pr_emerg("Do you have a strange power saving mode enabled?\n");
299 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
300 		panic("NMI: Not continuing");
301 
302 	pr_emerg("Dazed and confused, but trying to continue\n");
303 }
304 NOKPROBE_SYMBOL(unknown_nmi_error);
305 
306 static DEFINE_PER_CPU(bool, swallow_nmi);
307 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
308 
309 static void default_do_nmi(struct pt_regs *regs)
310 {
311 	unsigned char reason = 0;
312 	int handled;
313 	bool b2b = false;
314 
315 	/*
316 	 * CPU-specific NMI must be processed before non-CPU-specific
317 	 * NMI, otherwise we may lose it, because the CPU-specific
318 	 * NMI can not be detected/processed on other CPUs.
319 	 */
320 
321 	/*
322 	 * Back-to-back NMIs are interesting because they can either
323 	 * be two NMI or more than two NMIs (any thing over two is dropped
324 	 * due to NMI being edge-triggered).  If this is the second half
325 	 * of the back-to-back NMI, assume we dropped things and process
326 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
327 	 */
328 	if (regs->ip == __this_cpu_read(last_nmi_rip))
329 		b2b = true;
330 	else
331 		__this_cpu_write(swallow_nmi, false);
332 
333 	__this_cpu_write(last_nmi_rip, regs->ip);
334 
335 	handled = nmi_handle(NMI_LOCAL, regs, b2b);
336 	__this_cpu_add(nmi_stats.normal, handled);
337 	if (handled) {
338 		/*
339 		 * There are cases when a NMI handler handles multiple
340 		 * events in the current NMI.  One of these events may
341 		 * be queued for in the next NMI.  Because the event is
342 		 * already handled, the next NMI will result in an unknown
343 		 * NMI.  Instead lets flag this for a potential NMI to
344 		 * swallow.
345 		 */
346 		if (handled > 1)
347 			__this_cpu_write(swallow_nmi, true);
348 		return;
349 	}
350 
351 	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
352 	raw_spin_lock(&nmi_reason_lock);
353 	reason = x86_platform.get_nmi_reason();
354 
355 	if (reason & NMI_REASON_MASK) {
356 		if (reason & NMI_REASON_SERR)
357 			pci_serr_error(reason, regs);
358 		else if (reason & NMI_REASON_IOCHK)
359 			io_check_error(reason, regs);
360 #ifdef CONFIG_X86_32
361 		/*
362 		 * Reassert NMI in case it became active
363 		 * meanwhile as it's edge-triggered:
364 		 */
365 		reassert_nmi();
366 #endif
367 		__this_cpu_add(nmi_stats.external, 1);
368 		raw_spin_unlock(&nmi_reason_lock);
369 		return;
370 	}
371 	raw_spin_unlock(&nmi_reason_lock);
372 
373 	/*
374 	 * Only one NMI can be latched at a time.  To handle
375 	 * this we may process multiple nmi handlers at once to
376 	 * cover the case where an NMI is dropped.  The downside
377 	 * to this approach is we may process an NMI prematurely,
378 	 * while its real NMI is sitting latched.  This will cause
379 	 * an unknown NMI on the next run of the NMI processing.
380 	 *
381 	 * We tried to flag that condition above, by setting the
382 	 * swallow_nmi flag when we process more than one event.
383 	 * This condition is also only present on the second half
384 	 * of a back-to-back NMI, so we flag that condition too.
385 	 *
386 	 * If both are true, we assume we already processed this
387 	 * NMI previously and we swallow it.  Otherwise we reset
388 	 * the logic.
389 	 *
390 	 * There are scenarios where we may accidentally swallow
391 	 * a 'real' unknown NMI.  For example, while processing
392 	 * a perf NMI another perf NMI comes in along with a
393 	 * 'real' unknown NMI.  These two NMIs get combined into
394 	 * one (as descibed above).  When the next NMI gets
395 	 * processed, it will be flagged by perf as handled, but
396 	 * noone will know that there was a 'real' unknown NMI sent
397 	 * also.  As a result it gets swallowed.  Or if the first
398 	 * perf NMI returns two events handled then the second
399 	 * NMI will get eaten by the logic below, again losing a
400 	 * 'real' unknown NMI.  But this is the best we can do
401 	 * for now.
402 	 */
403 	if (b2b && __this_cpu_read(swallow_nmi))
404 		__this_cpu_add(nmi_stats.swallow, 1);
405 	else
406 		unknown_nmi_error(reason, regs);
407 }
408 NOKPROBE_SYMBOL(default_do_nmi);
409 
410 /*
411  * NMIs can hit breakpoints which will cause it to lose its
412  * NMI context with the CPU when the breakpoint does an iret.
413  */
414 #ifdef CONFIG_X86_32
415 /*
416  * For i386, NMIs use the same stack as the kernel, and we can
417  * add a workaround to the iret problem in C (preventing nested
418  * NMIs if an NMI takes a trap). Simply have 3 states the NMI
419  * can be in:
420  *
421  *  1) not running
422  *  2) executing
423  *  3) latched
424  *
425  * When no NMI is in progress, it is in the "not running" state.
426  * When an NMI comes in, it goes into the "executing" state.
427  * Normally, if another NMI is triggered, it does not interrupt
428  * the running NMI and the HW will simply latch it so that when
429  * the first NMI finishes, it will restart the second NMI.
430  * (Note, the latch is binary, thus multiple NMIs triggering,
431  *  when one is running, are ignored. Only one NMI is restarted.)
432  *
433  * If an NMI hits a breakpoint that executes an iret, another
434  * NMI can preempt it. We do not want to allow this new NMI
435  * to run, but we want to execute it when the first one finishes.
436  * We set the state to "latched", and the exit of the first NMI will
437  * perform a dec_return, if the result is zero (NOT_RUNNING), then
438  * it will simply exit the NMI handler. If not, the dec_return
439  * would have set the state to NMI_EXECUTING (what we want it to
440  * be when we are running). In this case, we simply jump back
441  * to rerun the NMI handler again, and restart the 'latched' NMI.
442  *
443  * No trap (breakpoint or page fault) should be hit before nmi_restart,
444  * thus there is no race between the first check of state for NOT_RUNNING
445  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
446  * at this point.
447  *
448  * In case the NMI takes a page fault, we need to save off the CR2
449  * because the NMI could have preempted another page fault and corrupt
450  * the CR2 that is about to be read. As nested NMIs must be restarted
451  * and they can not take breakpoints or page faults, the update of the
452  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
453  * Otherwise, there would be a race of another nested NMI coming in
454  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
455  */
456 enum nmi_states {
457 	NMI_NOT_RUNNING = 0,
458 	NMI_EXECUTING,
459 	NMI_LATCHED,
460 };
461 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
462 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
463 
464 #define nmi_nesting_preprocess(regs)					\
465 	do {								\
466 		if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {	\
467 			this_cpu_write(nmi_state, NMI_LATCHED);		\
468 			return;						\
469 		}							\
470 		this_cpu_write(nmi_state, NMI_EXECUTING);		\
471 		this_cpu_write(nmi_cr2, read_cr2());			\
472 	} while (0);							\
473 	nmi_restart:
474 
475 #define nmi_nesting_postprocess()					\
476 	do {								\
477 		if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))	\
478 			write_cr2(this_cpu_read(nmi_cr2));		\
479 		if (this_cpu_dec_return(nmi_state))			\
480 			goto nmi_restart;				\
481 	} while (0)
482 #else /* x86_64 */
483 /*
484  * In x86_64 things are a bit more difficult. This has the same problem
485  * where an NMI hitting a breakpoint that calls iret will remove the
486  * NMI context, allowing a nested NMI to enter. What makes this more
487  * difficult is that both NMIs and breakpoints have their own stack.
488  * When a new NMI or breakpoint is executed, the stack is set to a fixed
489  * point. If an NMI is nested, it will have its stack set at that same
490  * fixed address that the first NMI had, and will start corrupting the
491  * stack. This is handled in entry_64.S, but the same problem exists with
492  * the breakpoint stack.
493  *
494  * If a breakpoint is being processed, and the debug stack is being used,
495  * if an NMI comes in and also hits a breakpoint, the stack pointer
496  * will be set to the same fixed address as the breakpoint that was
497  * interrupted, causing that stack to be corrupted. To handle this case,
498  * check if the stack that was interrupted is the debug stack, and if
499  * so, change the IDT so that new breakpoints will use the current stack
500  * and not switch to the fixed address. On return of the NMI, switch back
501  * to the original IDT.
502  */
503 static DEFINE_PER_CPU(int, update_debug_stack);
504 
505 static inline void nmi_nesting_preprocess(struct pt_regs *regs)
506 {
507 	/*
508 	 * If we interrupted a breakpoint, it is possible that
509 	 * the nmi handler will have breakpoints too. We need to
510 	 * change the IDT such that breakpoints that happen here
511 	 * continue to use the NMI stack.
512 	 */
513 	if (unlikely(is_debug_stack(regs->sp))) {
514 		debug_stack_set_zero();
515 		this_cpu_write(update_debug_stack, 1);
516 	}
517 }
518 
519 static inline void nmi_nesting_postprocess(void)
520 {
521 	if (unlikely(this_cpu_read(update_debug_stack))) {
522 		debug_stack_reset();
523 		this_cpu_write(update_debug_stack, 0);
524 	}
525 }
526 #endif
527 
528 dotraplinkage notrace void
529 do_nmi(struct pt_regs *regs, long error_code)
530 {
531 	nmi_nesting_preprocess(regs);
532 
533 	nmi_enter();
534 
535 	inc_irq_stat(__nmi_count);
536 
537 	if (!ignore_nmis)
538 		default_do_nmi(regs);
539 
540 	nmi_exit();
541 
542 	/* On i386, may loop back to preprocess */
543 	nmi_nesting_postprocess();
544 }
545 NOKPROBE_SYMBOL(do_nmi);
546 
547 void stop_nmi(void)
548 {
549 	ignore_nmis++;
550 }
551 
552 void restart_nmi(void)
553 {
554 	ignore_nmis--;
555 }
556 
557 /* reset the back-to-back NMI logic */
558 void local_touch_nmi(void)
559 {
560 	__this_cpu_write(last_nmi_rip, 0);
561 }
562 EXPORT_SYMBOL_GPL(local_touch_nmi);
563