xref: /openbmc/linux/arch/x86/kernel/nmi.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/ratelimit.h>
21 #include <linux/slab.h>
22 #include <linux/export.h>
23 
24 #if defined(CONFIG_EDAC)
25 #include <linux/edac.h>
26 #endif
27 
28 #include <linux/atomic.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
31 #include <asm/nmi.h>
32 #include <asm/x86_init.h>
33 #include <asm/reboot.h>
34 #include <asm/cache.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/nmi.h>
38 
39 struct nmi_desc {
40 	spinlock_t lock;
41 	struct list_head head;
42 };
43 
44 static struct nmi_desc nmi_desc[NMI_MAX] =
45 {
46 	{
47 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
48 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
49 	},
50 	{
51 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
52 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
53 	},
54 	{
55 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
56 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
57 	},
58 	{
59 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
60 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
61 	},
62 
63 };
64 
65 struct nmi_stats {
66 	unsigned int normal;
67 	unsigned int unknown;
68 	unsigned int external;
69 	unsigned int swallow;
70 };
71 
72 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
73 
74 static int ignore_nmis __read_mostly;
75 
76 int unknown_nmi_panic;
77 /*
78  * Prevent NMI reason port (0x61) being accessed simultaneously, can
79  * only be used in NMI handler.
80  */
81 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
82 
83 static int __init setup_unknown_nmi_panic(char *str)
84 {
85 	unknown_nmi_panic = 1;
86 	return 1;
87 }
88 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
89 
90 #define nmi_to_desc(type) (&nmi_desc[type])
91 
92 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
93 
94 static int __init nmi_warning_debugfs(void)
95 {
96 	debugfs_create_u64("nmi_longest_ns", 0644,
97 			arch_debugfs_dir, &nmi_longest_ns);
98 	return 0;
99 }
100 fs_initcall(nmi_warning_debugfs);
101 
102 static void nmi_max_handler(struct irq_work *w)
103 {
104 	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
105 	int remainder_ns, decimal_msecs;
106 	u64 whole_msecs = ACCESS_ONCE(a->max_duration);
107 
108 	remainder_ns = do_div(whole_msecs, (1000 * 1000));
109 	decimal_msecs = remainder_ns / 1000;
110 
111 	printk_ratelimited(KERN_INFO
112 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
113 		a->handler, whole_msecs, decimal_msecs);
114 }
115 
116 static int nmi_handle(unsigned int type, struct pt_regs *regs)
117 {
118 	struct nmi_desc *desc = nmi_to_desc(type);
119 	struct nmiaction *a;
120 	int handled=0;
121 
122 	rcu_read_lock();
123 
124 	/*
125 	 * NMIs are edge-triggered, which means if you have enough
126 	 * of them concurrently, you can lose some because only one
127 	 * can be latched at any given time.  Walk the whole list
128 	 * to handle those situations.
129 	 */
130 	list_for_each_entry_rcu(a, &desc->head, list) {
131 		int thishandled;
132 		u64 delta;
133 
134 		delta = sched_clock();
135 		thishandled = a->handler(type, regs);
136 		handled += thishandled;
137 		delta = sched_clock() - delta;
138 		trace_nmi_handler(a->handler, (int)delta, thishandled);
139 
140 		if (delta < nmi_longest_ns || delta < a->max_duration)
141 			continue;
142 
143 		a->max_duration = delta;
144 		irq_work_queue(&a->irq_work);
145 	}
146 
147 	rcu_read_unlock();
148 
149 	/* return total number of NMI events handled */
150 	return handled;
151 }
152 NOKPROBE_SYMBOL(nmi_handle);
153 
154 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
155 {
156 	struct nmi_desc *desc = nmi_to_desc(type);
157 	unsigned long flags;
158 
159 	if (!action->handler)
160 		return -EINVAL;
161 
162 	init_irq_work(&action->irq_work, nmi_max_handler);
163 
164 	spin_lock_irqsave(&desc->lock, flags);
165 
166 	/*
167 	 * most handlers of type NMI_UNKNOWN never return because
168 	 * they just assume the NMI is theirs.  Just a sanity check
169 	 * to manage expectations
170 	 */
171 	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
172 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
173 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
174 
175 	/*
176 	 * some handlers need to be executed first otherwise a fake
177 	 * event confuses some handlers (kdump uses this flag)
178 	 */
179 	if (action->flags & NMI_FLAG_FIRST)
180 		list_add_rcu(&action->list, &desc->head);
181 	else
182 		list_add_tail_rcu(&action->list, &desc->head);
183 
184 	spin_unlock_irqrestore(&desc->lock, flags);
185 	return 0;
186 }
187 EXPORT_SYMBOL(__register_nmi_handler);
188 
189 void unregister_nmi_handler(unsigned int type, const char *name)
190 {
191 	struct nmi_desc *desc = nmi_to_desc(type);
192 	struct nmiaction *n;
193 	unsigned long flags;
194 
195 	spin_lock_irqsave(&desc->lock, flags);
196 
197 	list_for_each_entry_rcu(n, &desc->head, list) {
198 		/*
199 		 * the name passed in to describe the nmi handler
200 		 * is used as the lookup key
201 		 */
202 		if (!strcmp(n->name, name)) {
203 			WARN(in_nmi(),
204 				"Trying to free NMI (%s) from NMI context!\n", n->name);
205 			list_del_rcu(&n->list);
206 			break;
207 		}
208 	}
209 
210 	spin_unlock_irqrestore(&desc->lock, flags);
211 	synchronize_rcu();
212 }
213 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
214 
215 static void
216 pci_serr_error(unsigned char reason, struct pt_regs *regs)
217 {
218 	/* check to see if anyone registered against these types of errors */
219 	if (nmi_handle(NMI_SERR, regs))
220 		return;
221 
222 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
223 		 reason, smp_processor_id());
224 
225 	/*
226 	 * On some machines, PCI SERR line is used to report memory
227 	 * errors. EDAC makes use of it.
228 	 */
229 #if defined(CONFIG_EDAC)
230 	if (edac_handler_set()) {
231 		edac_atomic_assert_error();
232 		return;
233 	}
234 #endif
235 
236 	if (panic_on_unrecovered_nmi)
237 		nmi_panic(regs, "NMI: Not continuing");
238 
239 	pr_emerg("Dazed and confused, but trying to continue\n");
240 
241 	/* Clear and disable the PCI SERR error line. */
242 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
243 	outb(reason, NMI_REASON_PORT);
244 }
245 NOKPROBE_SYMBOL(pci_serr_error);
246 
247 static void
248 io_check_error(unsigned char reason, struct pt_regs *regs)
249 {
250 	unsigned long i;
251 
252 	/* check to see if anyone registered against these types of errors */
253 	if (nmi_handle(NMI_IO_CHECK, regs))
254 		return;
255 
256 	pr_emerg(
257 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
258 		 reason, smp_processor_id());
259 	show_regs(regs);
260 
261 	if (panic_on_io_nmi) {
262 		nmi_panic(regs, "NMI IOCK error: Not continuing");
263 
264 		/*
265 		 * If we end up here, it means we have received an NMI while
266 		 * processing panic(). Simply return without delaying and
267 		 * re-enabling NMIs.
268 		 */
269 		return;
270 	}
271 
272 	/* Re-enable the IOCK line, wait for a few seconds */
273 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
274 	outb(reason, NMI_REASON_PORT);
275 
276 	i = 20000;
277 	while (--i) {
278 		touch_nmi_watchdog();
279 		udelay(100);
280 	}
281 
282 	reason &= ~NMI_REASON_CLEAR_IOCHK;
283 	outb(reason, NMI_REASON_PORT);
284 }
285 NOKPROBE_SYMBOL(io_check_error);
286 
287 static void
288 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
289 {
290 	int handled;
291 
292 	/*
293 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
294 	 * Of course this makes having multiple 'unknown' handlers useless
295 	 * as only the first one is ever run (unless it can actually determine
296 	 * if it caused the NMI)
297 	 */
298 	handled = nmi_handle(NMI_UNKNOWN, regs);
299 	if (handled) {
300 		__this_cpu_add(nmi_stats.unknown, handled);
301 		return;
302 	}
303 
304 	__this_cpu_add(nmi_stats.unknown, 1);
305 
306 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
307 		 reason, smp_processor_id());
308 
309 	pr_emerg("Do you have a strange power saving mode enabled?\n");
310 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
311 		nmi_panic(regs, "NMI: Not continuing");
312 
313 	pr_emerg("Dazed and confused, but trying to continue\n");
314 }
315 NOKPROBE_SYMBOL(unknown_nmi_error);
316 
317 static DEFINE_PER_CPU(bool, swallow_nmi);
318 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
319 
320 static void default_do_nmi(struct pt_regs *regs)
321 {
322 	unsigned char reason = 0;
323 	int handled;
324 	bool b2b = false;
325 
326 	/*
327 	 * CPU-specific NMI must be processed before non-CPU-specific
328 	 * NMI, otherwise we may lose it, because the CPU-specific
329 	 * NMI can not be detected/processed on other CPUs.
330 	 */
331 
332 	/*
333 	 * Back-to-back NMIs are interesting because they can either
334 	 * be two NMI or more than two NMIs (any thing over two is dropped
335 	 * due to NMI being edge-triggered).  If this is the second half
336 	 * of the back-to-back NMI, assume we dropped things and process
337 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
338 	 */
339 	if (regs->ip == __this_cpu_read(last_nmi_rip))
340 		b2b = true;
341 	else
342 		__this_cpu_write(swallow_nmi, false);
343 
344 	__this_cpu_write(last_nmi_rip, regs->ip);
345 
346 	handled = nmi_handle(NMI_LOCAL, regs);
347 	__this_cpu_add(nmi_stats.normal, handled);
348 	if (handled) {
349 		/*
350 		 * There are cases when a NMI handler handles multiple
351 		 * events in the current NMI.  One of these events may
352 		 * be queued for in the next NMI.  Because the event is
353 		 * already handled, the next NMI will result in an unknown
354 		 * NMI.  Instead lets flag this for a potential NMI to
355 		 * swallow.
356 		 */
357 		if (handled > 1)
358 			__this_cpu_write(swallow_nmi, true);
359 		return;
360 	}
361 
362 	/*
363 	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
364 	 *
365 	 * Another CPU may be processing panic routines while holding
366 	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
367 	 * and if so, call its callback directly.  If there is no CPU preparing
368 	 * crash dump, we simply loop here.
369 	 */
370 	while (!raw_spin_trylock(&nmi_reason_lock)) {
371 		run_crash_ipi_callback(regs);
372 		cpu_relax();
373 	}
374 
375 	reason = x86_platform.get_nmi_reason();
376 
377 	if (reason & NMI_REASON_MASK) {
378 		if (reason & NMI_REASON_SERR)
379 			pci_serr_error(reason, regs);
380 		else if (reason & NMI_REASON_IOCHK)
381 			io_check_error(reason, regs);
382 #ifdef CONFIG_X86_32
383 		/*
384 		 * Reassert NMI in case it became active
385 		 * meanwhile as it's edge-triggered:
386 		 */
387 		reassert_nmi();
388 #endif
389 		__this_cpu_add(nmi_stats.external, 1);
390 		raw_spin_unlock(&nmi_reason_lock);
391 		return;
392 	}
393 	raw_spin_unlock(&nmi_reason_lock);
394 
395 	/*
396 	 * Only one NMI can be latched at a time.  To handle
397 	 * this we may process multiple nmi handlers at once to
398 	 * cover the case where an NMI is dropped.  The downside
399 	 * to this approach is we may process an NMI prematurely,
400 	 * while its real NMI is sitting latched.  This will cause
401 	 * an unknown NMI on the next run of the NMI processing.
402 	 *
403 	 * We tried to flag that condition above, by setting the
404 	 * swallow_nmi flag when we process more than one event.
405 	 * This condition is also only present on the second half
406 	 * of a back-to-back NMI, so we flag that condition too.
407 	 *
408 	 * If both are true, we assume we already processed this
409 	 * NMI previously and we swallow it.  Otherwise we reset
410 	 * the logic.
411 	 *
412 	 * There are scenarios where we may accidentally swallow
413 	 * a 'real' unknown NMI.  For example, while processing
414 	 * a perf NMI another perf NMI comes in along with a
415 	 * 'real' unknown NMI.  These two NMIs get combined into
416 	 * one (as descibed above).  When the next NMI gets
417 	 * processed, it will be flagged by perf as handled, but
418 	 * noone will know that there was a 'real' unknown NMI sent
419 	 * also.  As a result it gets swallowed.  Or if the first
420 	 * perf NMI returns two events handled then the second
421 	 * NMI will get eaten by the logic below, again losing a
422 	 * 'real' unknown NMI.  But this is the best we can do
423 	 * for now.
424 	 */
425 	if (b2b && __this_cpu_read(swallow_nmi))
426 		__this_cpu_add(nmi_stats.swallow, 1);
427 	else
428 		unknown_nmi_error(reason, regs);
429 }
430 NOKPROBE_SYMBOL(default_do_nmi);
431 
432 /*
433  * NMIs can page fault or hit breakpoints which will cause it to lose
434  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
435  *
436  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
437  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
438  * if the outer NMI came from kernel mode, but we can still nest if the
439  * outer NMI came from user mode.
440  *
441  * To handle these nested NMIs, we have three states:
442  *
443  *  1) not running
444  *  2) executing
445  *  3) latched
446  *
447  * When no NMI is in progress, it is in the "not running" state.
448  * When an NMI comes in, it goes into the "executing" state.
449  * Normally, if another NMI is triggered, it does not interrupt
450  * the running NMI and the HW will simply latch it so that when
451  * the first NMI finishes, it will restart the second NMI.
452  * (Note, the latch is binary, thus multiple NMIs triggering,
453  *  when one is running, are ignored. Only one NMI is restarted.)
454  *
455  * If an NMI executes an iret, another NMI can preempt it. We do not
456  * want to allow this new NMI to run, but we want to execute it when the
457  * first one finishes.  We set the state to "latched", and the exit of
458  * the first NMI will perform a dec_return, if the result is zero
459  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
460  * dec_return would have set the state to NMI_EXECUTING (what we want it
461  * to be when we are running). In this case, we simply jump back to
462  * rerun the NMI handler again, and restart the 'latched' NMI.
463  *
464  * No trap (breakpoint or page fault) should be hit before nmi_restart,
465  * thus there is no race between the first check of state for NOT_RUNNING
466  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
467  * at this point.
468  *
469  * In case the NMI takes a page fault, we need to save off the CR2
470  * because the NMI could have preempted another page fault and corrupt
471  * the CR2 that is about to be read. As nested NMIs must be restarted
472  * and they can not take breakpoints or page faults, the update of the
473  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
474  * Otherwise, there would be a race of another nested NMI coming in
475  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
476  */
477 enum nmi_states {
478 	NMI_NOT_RUNNING = 0,
479 	NMI_EXECUTING,
480 	NMI_LATCHED,
481 };
482 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
483 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
484 
485 #ifdef CONFIG_X86_64
486 /*
487  * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
488  * some care, the inner breakpoint will clobber the outer breakpoint's
489  * stack.
490  *
491  * If a breakpoint is being processed, and the debug stack is being
492  * used, if an NMI comes in and also hits a breakpoint, the stack
493  * pointer will be set to the same fixed address as the breakpoint that
494  * was interrupted, causing that stack to be corrupted. To handle this
495  * case, check if the stack that was interrupted is the debug stack, and
496  * if so, change the IDT so that new breakpoints will use the current
497  * stack and not switch to the fixed address. On return of the NMI,
498  * switch back to the original IDT.
499  */
500 static DEFINE_PER_CPU(int, update_debug_stack);
501 #endif
502 
503 dotraplinkage notrace void
504 do_nmi(struct pt_regs *regs, long error_code)
505 {
506 	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
507 		this_cpu_write(nmi_state, NMI_LATCHED);
508 		return;
509 	}
510 	this_cpu_write(nmi_state, NMI_EXECUTING);
511 	this_cpu_write(nmi_cr2, read_cr2());
512 nmi_restart:
513 
514 #ifdef CONFIG_X86_64
515 	/*
516 	 * If we interrupted a breakpoint, it is possible that
517 	 * the nmi handler will have breakpoints too. We need to
518 	 * change the IDT such that breakpoints that happen here
519 	 * continue to use the NMI stack.
520 	 */
521 	if (unlikely(is_debug_stack(regs->sp))) {
522 		debug_stack_set_zero();
523 		this_cpu_write(update_debug_stack, 1);
524 	}
525 #endif
526 
527 	nmi_enter();
528 
529 	inc_irq_stat(__nmi_count);
530 
531 	if (!ignore_nmis)
532 		default_do_nmi(regs);
533 
534 	nmi_exit();
535 
536 #ifdef CONFIG_X86_64
537 	if (unlikely(this_cpu_read(update_debug_stack))) {
538 		debug_stack_reset();
539 		this_cpu_write(update_debug_stack, 0);
540 	}
541 #endif
542 
543 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
544 		write_cr2(this_cpu_read(nmi_cr2));
545 	if (this_cpu_dec_return(nmi_state))
546 		goto nmi_restart;
547 }
548 NOKPROBE_SYMBOL(do_nmi);
549 
550 void stop_nmi(void)
551 {
552 	ignore_nmis++;
553 }
554 
555 void restart_nmi(void)
556 {
557 	ignore_nmis--;
558 }
559 
560 /* reset the back-to-back NMI logic */
561 void local_touch_nmi(void)
562 {
563 	__this_cpu_write(last_nmi_rip, 0);
564 }
565 EXPORT_SYMBOL_GPL(local_touch_nmi);
566