1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * Copyright (C) 2011 Don Zickus Red Hat, Inc. 5 * 6 * Pentium III FXSR, SSE support 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 10 /* 11 * Handle hardware traps and faults. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/kprobes.h> 15 #include <linux/kdebug.h> 16 #include <linux/nmi.h> 17 #include <linux/debugfs.h> 18 #include <linux/delay.h> 19 #include <linux/hardirq.h> 20 #include <linux/slab.h> 21 #include <linux/export.h> 22 23 #if defined(CONFIG_EDAC) 24 #include <linux/edac.h> 25 #endif 26 27 #include <linux/atomic.h> 28 #include <asm/traps.h> 29 #include <asm/mach_traps.h> 30 #include <asm/nmi.h> 31 #include <asm/x86_init.h> 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/nmi.h> 35 36 struct nmi_desc { 37 spinlock_t lock; 38 struct list_head head; 39 }; 40 41 static struct nmi_desc nmi_desc[NMI_MAX] = 42 { 43 { 44 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), 45 .head = LIST_HEAD_INIT(nmi_desc[0].head), 46 }, 47 { 48 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), 49 .head = LIST_HEAD_INIT(nmi_desc[1].head), 50 }, 51 { 52 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), 53 .head = LIST_HEAD_INIT(nmi_desc[2].head), 54 }, 55 { 56 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), 57 .head = LIST_HEAD_INIT(nmi_desc[3].head), 58 }, 59 60 }; 61 62 struct nmi_stats { 63 unsigned int normal; 64 unsigned int unknown; 65 unsigned int external; 66 unsigned int swallow; 67 }; 68 69 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); 70 71 static int ignore_nmis; 72 73 int unknown_nmi_panic; 74 /* 75 * Prevent NMI reason port (0x61) being accessed simultaneously, can 76 * only be used in NMI handler. 77 */ 78 static DEFINE_RAW_SPINLOCK(nmi_reason_lock); 79 80 static int __init setup_unknown_nmi_panic(char *str) 81 { 82 unknown_nmi_panic = 1; 83 return 1; 84 } 85 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 86 87 #define nmi_to_desc(type) (&nmi_desc[type]) 88 89 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; 90 91 static int __init nmi_warning_debugfs(void) 92 { 93 debugfs_create_u64("nmi_longest_ns", 0644, 94 arch_debugfs_dir, &nmi_longest_ns); 95 return 0; 96 } 97 fs_initcall(nmi_warning_debugfs); 98 99 static void nmi_max_handler(struct irq_work *w) 100 { 101 struct nmiaction *a = container_of(w, struct nmiaction, irq_work); 102 int remainder_ns, decimal_msecs; 103 u64 whole_msecs = ACCESS_ONCE(a->max_duration); 104 105 remainder_ns = do_div(whole_msecs, (1000 * 1000)); 106 decimal_msecs = remainder_ns / 1000; 107 108 printk_ratelimited(KERN_INFO 109 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", 110 a->handler, whole_msecs, decimal_msecs); 111 } 112 113 static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b) 114 { 115 struct nmi_desc *desc = nmi_to_desc(type); 116 struct nmiaction *a; 117 int handled=0; 118 119 rcu_read_lock(); 120 121 /* 122 * NMIs are edge-triggered, which means if you have enough 123 * of them concurrently, you can lose some because only one 124 * can be latched at any given time. Walk the whole list 125 * to handle those situations. 126 */ 127 list_for_each_entry_rcu(a, &desc->head, list) { 128 int thishandled; 129 u64 delta; 130 131 delta = sched_clock(); 132 thishandled = a->handler(type, regs); 133 handled += thishandled; 134 delta = sched_clock() - delta; 135 trace_nmi_handler(a->handler, (int)delta, thishandled); 136 137 if (delta < nmi_longest_ns || delta < a->max_duration) 138 continue; 139 140 a->max_duration = delta; 141 irq_work_queue(&a->irq_work); 142 } 143 144 rcu_read_unlock(); 145 146 /* return total number of NMI events handled */ 147 return handled; 148 } 149 150 int __register_nmi_handler(unsigned int type, struct nmiaction *action) 151 { 152 struct nmi_desc *desc = nmi_to_desc(type); 153 unsigned long flags; 154 155 if (!action->handler) 156 return -EINVAL; 157 158 init_irq_work(&action->irq_work, nmi_max_handler); 159 160 spin_lock_irqsave(&desc->lock, flags); 161 162 /* 163 * most handlers of type NMI_UNKNOWN never return because 164 * they just assume the NMI is theirs. Just a sanity check 165 * to manage expectations 166 */ 167 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head)); 168 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); 169 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); 170 171 /* 172 * some handlers need to be executed first otherwise a fake 173 * event confuses some handlers (kdump uses this flag) 174 */ 175 if (action->flags & NMI_FLAG_FIRST) 176 list_add_rcu(&action->list, &desc->head); 177 else 178 list_add_tail_rcu(&action->list, &desc->head); 179 180 spin_unlock_irqrestore(&desc->lock, flags); 181 return 0; 182 } 183 EXPORT_SYMBOL(__register_nmi_handler); 184 185 void unregister_nmi_handler(unsigned int type, const char *name) 186 { 187 struct nmi_desc *desc = nmi_to_desc(type); 188 struct nmiaction *n; 189 unsigned long flags; 190 191 spin_lock_irqsave(&desc->lock, flags); 192 193 list_for_each_entry_rcu(n, &desc->head, list) { 194 /* 195 * the name passed in to describe the nmi handler 196 * is used as the lookup key 197 */ 198 if (!strcmp(n->name, name)) { 199 WARN(in_nmi(), 200 "Trying to free NMI (%s) from NMI context!\n", n->name); 201 list_del_rcu(&n->list); 202 break; 203 } 204 } 205 206 spin_unlock_irqrestore(&desc->lock, flags); 207 synchronize_rcu(); 208 } 209 EXPORT_SYMBOL_GPL(unregister_nmi_handler); 210 211 static __kprobes void 212 pci_serr_error(unsigned char reason, struct pt_regs *regs) 213 { 214 /* check to see if anyone registered against these types of errors */ 215 if (nmi_handle(NMI_SERR, regs, false)) 216 return; 217 218 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", 219 reason, smp_processor_id()); 220 221 /* 222 * On some machines, PCI SERR line is used to report memory 223 * errors. EDAC makes use of it. 224 */ 225 #if defined(CONFIG_EDAC) 226 if (edac_handler_set()) { 227 edac_atomic_assert_error(); 228 return; 229 } 230 #endif 231 232 if (panic_on_unrecovered_nmi) 233 panic("NMI: Not continuing"); 234 235 pr_emerg("Dazed and confused, but trying to continue\n"); 236 237 /* Clear and disable the PCI SERR error line. */ 238 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; 239 outb(reason, NMI_REASON_PORT); 240 } 241 242 static __kprobes void 243 io_check_error(unsigned char reason, struct pt_regs *regs) 244 { 245 unsigned long i; 246 247 /* check to see if anyone registered against these types of errors */ 248 if (nmi_handle(NMI_IO_CHECK, regs, false)) 249 return; 250 251 pr_emerg( 252 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", 253 reason, smp_processor_id()); 254 show_regs(regs); 255 256 if (panic_on_io_nmi) 257 panic("NMI IOCK error: Not continuing"); 258 259 /* Re-enable the IOCK line, wait for a few seconds */ 260 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; 261 outb(reason, NMI_REASON_PORT); 262 263 i = 20000; 264 while (--i) { 265 touch_nmi_watchdog(); 266 udelay(100); 267 } 268 269 reason &= ~NMI_REASON_CLEAR_IOCHK; 270 outb(reason, NMI_REASON_PORT); 271 } 272 273 static __kprobes void 274 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 275 { 276 int handled; 277 278 /* 279 * Use 'false' as back-to-back NMIs are dealt with one level up. 280 * Of course this makes having multiple 'unknown' handlers useless 281 * as only the first one is ever run (unless it can actually determine 282 * if it caused the NMI) 283 */ 284 handled = nmi_handle(NMI_UNKNOWN, regs, false); 285 if (handled) { 286 __this_cpu_add(nmi_stats.unknown, handled); 287 return; 288 } 289 290 __this_cpu_add(nmi_stats.unknown, 1); 291 292 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 293 reason, smp_processor_id()); 294 295 pr_emerg("Do you have a strange power saving mode enabled?\n"); 296 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 297 panic("NMI: Not continuing"); 298 299 pr_emerg("Dazed and confused, but trying to continue\n"); 300 } 301 302 static DEFINE_PER_CPU(bool, swallow_nmi); 303 static DEFINE_PER_CPU(unsigned long, last_nmi_rip); 304 305 static __kprobes void default_do_nmi(struct pt_regs *regs) 306 { 307 unsigned char reason = 0; 308 int handled; 309 bool b2b = false; 310 311 /* 312 * CPU-specific NMI must be processed before non-CPU-specific 313 * NMI, otherwise we may lose it, because the CPU-specific 314 * NMI can not be detected/processed on other CPUs. 315 */ 316 317 /* 318 * Back-to-back NMIs are interesting because they can either 319 * be two NMI or more than two NMIs (any thing over two is dropped 320 * due to NMI being edge-triggered). If this is the second half 321 * of the back-to-back NMI, assume we dropped things and process 322 * more handlers. Otherwise reset the 'swallow' NMI behaviour 323 */ 324 if (regs->ip == __this_cpu_read(last_nmi_rip)) 325 b2b = true; 326 else 327 __this_cpu_write(swallow_nmi, false); 328 329 __this_cpu_write(last_nmi_rip, regs->ip); 330 331 handled = nmi_handle(NMI_LOCAL, regs, b2b); 332 __this_cpu_add(nmi_stats.normal, handled); 333 if (handled) { 334 /* 335 * There are cases when a NMI handler handles multiple 336 * events in the current NMI. One of these events may 337 * be queued for in the next NMI. Because the event is 338 * already handled, the next NMI will result in an unknown 339 * NMI. Instead lets flag this for a potential NMI to 340 * swallow. 341 */ 342 if (handled > 1) 343 __this_cpu_write(swallow_nmi, true); 344 return; 345 } 346 347 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */ 348 raw_spin_lock(&nmi_reason_lock); 349 reason = x86_platform.get_nmi_reason(); 350 351 if (reason & NMI_REASON_MASK) { 352 if (reason & NMI_REASON_SERR) 353 pci_serr_error(reason, regs); 354 else if (reason & NMI_REASON_IOCHK) 355 io_check_error(reason, regs); 356 #ifdef CONFIG_X86_32 357 /* 358 * Reassert NMI in case it became active 359 * meanwhile as it's edge-triggered: 360 */ 361 reassert_nmi(); 362 #endif 363 __this_cpu_add(nmi_stats.external, 1); 364 raw_spin_unlock(&nmi_reason_lock); 365 return; 366 } 367 raw_spin_unlock(&nmi_reason_lock); 368 369 /* 370 * Only one NMI can be latched at a time. To handle 371 * this we may process multiple nmi handlers at once to 372 * cover the case where an NMI is dropped. The downside 373 * to this approach is we may process an NMI prematurely, 374 * while its real NMI is sitting latched. This will cause 375 * an unknown NMI on the next run of the NMI processing. 376 * 377 * We tried to flag that condition above, by setting the 378 * swallow_nmi flag when we process more than one event. 379 * This condition is also only present on the second half 380 * of a back-to-back NMI, so we flag that condition too. 381 * 382 * If both are true, we assume we already processed this 383 * NMI previously and we swallow it. Otherwise we reset 384 * the logic. 385 * 386 * There are scenarios where we may accidentally swallow 387 * a 'real' unknown NMI. For example, while processing 388 * a perf NMI another perf NMI comes in along with a 389 * 'real' unknown NMI. These two NMIs get combined into 390 * one (as descibed above). When the next NMI gets 391 * processed, it will be flagged by perf as handled, but 392 * noone will know that there was a 'real' unknown NMI sent 393 * also. As a result it gets swallowed. Or if the first 394 * perf NMI returns two events handled then the second 395 * NMI will get eaten by the logic below, again losing a 396 * 'real' unknown NMI. But this is the best we can do 397 * for now. 398 */ 399 if (b2b && __this_cpu_read(swallow_nmi)) 400 __this_cpu_add(nmi_stats.swallow, 1); 401 else 402 unknown_nmi_error(reason, regs); 403 } 404 405 /* 406 * NMIs can hit breakpoints which will cause it to lose its 407 * NMI context with the CPU when the breakpoint does an iret. 408 */ 409 #ifdef CONFIG_X86_32 410 /* 411 * For i386, NMIs use the same stack as the kernel, and we can 412 * add a workaround to the iret problem in C (preventing nested 413 * NMIs if an NMI takes a trap). Simply have 3 states the NMI 414 * can be in: 415 * 416 * 1) not running 417 * 2) executing 418 * 3) latched 419 * 420 * When no NMI is in progress, it is in the "not running" state. 421 * When an NMI comes in, it goes into the "executing" state. 422 * Normally, if another NMI is triggered, it does not interrupt 423 * the running NMI and the HW will simply latch it so that when 424 * the first NMI finishes, it will restart the second NMI. 425 * (Note, the latch is binary, thus multiple NMIs triggering, 426 * when one is running, are ignored. Only one NMI is restarted.) 427 * 428 * If an NMI hits a breakpoint that executes an iret, another 429 * NMI can preempt it. We do not want to allow this new NMI 430 * to run, but we want to execute it when the first one finishes. 431 * We set the state to "latched", and the exit of the first NMI will 432 * perform a dec_return, if the result is zero (NOT_RUNNING), then 433 * it will simply exit the NMI handler. If not, the dec_return 434 * would have set the state to NMI_EXECUTING (what we want it to 435 * be when we are running). In this case, we simply jump back 436 * to rerun the NMI handler again, and restart the 'latched' NMI. 437 * 438 * No trap (breakpoint or page fault) should be hit before nmi_restart, 439 * thus there is no race between the first check of state for NOT_RUNNING 440 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs 441 * at this point. 442 * 443 * In case the NMI takes a page fault, we need to save off the CR2 444 * because the NMI could have preempted another page fault and corrupt 445 * the CR2 that is about to be read. As nested NMIs must be restarted 446 * and they can not take breakpoints or page faults, the update of the 447 * CR2 must be done before converting the nmi state back to NOT_RUNNING. 448 * Otherwise, there would be a race of another nested NMI coming in 449 * after setting state to NOT_RUNNING but before updating the nmi_cr2. 450 */ 451 enum nmi_states { 452 NMI_NOT_RUNNING = 0, 453 NMI_EXECUTING, 454 NMI_LATCHED, 455 }; 456 static DEFINE_PER_CPU(enum nmi_states, nmi_state); 457 static DEFINE_PER_CPU(unsigned long, nmi_cr2); 458 459 #define nmi_nesting_preprocess(regs) \ 460 do { \ 461 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \ 462 this_cpu_write(nmi_state, NMI_LATCHED); \ 463 return; \ 464 } \ 465 this_cpu_write(nmi_state, NMI_EXECUTING); \ 466 this_cpu_write(nmi_cr2, read_cr2()); \ 467 } while (0); \ 468 nmi_restart: 469 470 #define nmi_nesting_postprocess() \ 471 do { \ 472 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \ 473 write_cr2(this_cpu_read(nmi_cr2)); \ 474 if (this_cpu_dec_return(nmi_state)) \ 475 goto nmi_restart; \ 476 } while (0) 477 #else /* x86_64 */ 478 /* 479 * In x86_64 things are a bit more difficult. This has the same problem 480 * where an NMI hitting a breakpoint that calls iret will remove the 481 * NMI context, allowing a nested NMI to enter. What makes this more 482 * difficult is that both NMIs and breakpoints have their own stack. 483 * When a new NMI or breakpoint is executed, the stack is set to a fixed 484 * point. If an NMI is nested, it will have its stack set at that same 485 * fixed address that the first NMI had, and will start corrupting the 486 * stack. This is handled in entry_64.S, but the same problem exists with 487 * the breakpoint stack. 488 * 489 * If a breakpoint is being processed, and the debug stack is being used, 490 * if an NMI comes in and also hits a breakpoint, the stack pointer 491 * will be set to the same fixed address as the breakpoint that was 492 * interrupted, causing that stack to be corrupted. To handle this case, 493 * check if the stack that was interrupted is the debug stack, and if 494 * so, change the IDT so that new breakpoints will use the current stack 495 * and not switch to the fixed address. On return of the NMI, switch back 496 * to the original IDT. 497 */ 498 static DEFINE_PER_CPU(int, update_debug_stack); 499 500 static inline void nmi_nesting_preprocess(struct pt_regs *regs) 501 { 502 /* 503 * If we interrupted a breakpoint, it is possible that 504 * the nmi handler will have breakpoints too. We need to 505 * change the IDT such that breakpoints that happen here 506 * continue to use the NMI stack. 507 */ 508 if (unlikely(is_debug_stack(regs->sp))) { 509 debug_stack_set_zero(); 510 this_cpu_write(update_debug_stack, 1); 511 } 512 } 513 514 static inline void nmi_nesting_postprocess(void) 515 { 516 if (unlikely(this_cpu_read(update_debug_stack))) { 517 debug_stack_reset(); 518 this_cpu_write(update_debug_stack, 0); 519 } 520 } 521 #endif 522 523 dotraplinkage notrace __kprobes void 524 do_nmi(struct pt_regs *regs, long error_code) 525 { 526 nmi_nesting_preprocess(regs); 527 528 nmi_enter(); 529 530 inc_irq_stat(__nmi_count); 531 532 if (!ignore_nmis) 533 default_do_nmi(regs); 534 535 nmi_exit(); 536 537 /* On i386, may loop back to preprocess */ 538 nmi_nesting_postprocess(); 539 } 540 541 void stop_nmi(void) 542 { 543 ignore_nmis++; 544 } 545 546 void restart_nmi(void) 547 { 548 ignore_nmis--; 549 } 550 551 /* reset the back-to-back NMI logic */ 552 void local_touch_nmi(void) 553 { 554 __this_cpu_write(last_nmi_rip, 0); 555 } 556 EXPORT_SYMBOL_GPL(local_touch_nmi); 557