xref: /openbmc/linux/arch/x86/kernel/nmi.c (revision 86db9f28)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
6  *
7  *  Pentium III FXSR, SSE support
8  *	Gareth Hughes <gareth@valinux.com>, May 2000
9  */
10 
11 /*
12  * Handle hardware traps and faults.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/kdebug.h>
17 #include <linux/sched/debug.h>
18 #include <linux/nmi.h>
19 #include <linux/debugfs.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/ratelimit.h>
23 #include <linux/slab.h>
24 #include <linux/export.h>
25 #include <linux/atomic.h>
26 #include <linux/sched/clock.h>
27 
28 #if defined(CONFIG_EDAC)
29 #include <linux/edac.h>
30 #endif
31 
32 #include <asm/cpu_entry_area.h>
33 #include <asm/traps.h>
34 #include <asm/mach_traps.h>
35 #include <asm/nmi.h>
36 #include <asm/x86_init.h>
37 #include <asm/reboot.h>
38 #include <asm/cache.h>
39 #include <asm/nospec-branch.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/nmi.h>
43 
44 struct nmi_desc {
45 	raw_spinlock_t lock;
46 	struct list_head head;
47 };
48 
49 static struct nmi_desc nmi_desc[NMI_MAX] =
50 {
51 	{
52 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
53 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
54 	},
55 	{
56 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
57 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
58 	},
59 	{
60 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
61 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
62 	},
63 	{
64 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
65 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
66 	},
67 
68 };
69 
70 struct nmi_stats {
71 	unsigned int normal;
72 	unsigned int unknown;
73 	unsigned int external;
74 	unsigned int swallow;
75 };
76 
77 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
78 
79 static int ignore_nmis __read_mostly;
80 
81 int unknown_nmi_panic;
82 /*
83  * Prevent NMI reason port (0x61) being accessed simultaneously, can
84  * only be used in NMI handler.
85  */
86 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
87 
88 static int __init setup_unknown_nmi_panic(char *str)
89 {
90 	unknown_nmi_panic = 1;
91 	return 1;
92 }
93 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
94 
95 #define nmi_to_desc(type) (&nmi_desc[type])
96 
97 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
98 
99 static int __init nmi_warning_debugfs(void)
100 {
101 	debugfs_create_u64("nmi_longest_ns", 0644,
102 			arch_debugfs_dir, &nmi_longest_ns);
103 	return 0;
104 }
105 fs_initcall(nmi_warning_debugfs);
106 
107 static void nmi_max_handler(struct irq_work *w)
108 {
109 	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
110 	int remainder_ns, decimal_msecs;
111 	u64 whole_msecs = READ_ONCE(a->max_duration);
112 
113 	remainder_ns = do_div(whole_msecs, (1000 * 1000));
114 	decimal_msecs = remainder_ns / 1000;
115 
116 	printk_ratelimited(KERN_INFO
117 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
118 		a->handler, whole_msecs, decimal_msecs);
119 }
120 
121 static int nmi_handle(unsigned int type, struct pt_regs *regs)
122 {
123 	struct nmi_desc *desc = nmi_to_desc(type);
124 	struct nmiaction *a;
125 	int handled=0;
126 
127 	rcu_read_lock();
128 
129 	/*
130 	 * NMIs are edge-triggered, which means if you have enough
131 	 * of them concurrently, you can lose some because only one
132 	 * can be latched at any given time.  Walk the whole list
133 	 * to handle those situations.
134 	 */
135 	list_for_each_entry_rcu(a, &desc->head, list) {
136 		int thishandled;
137 		u64 delta;
138 
139 		delta = sched_clock();
140 		thishandled = a->handler(type, regs);
141 		handled += thishandled;
142 		delta = sched_clock() - delta;
143 		trace_nmi_handler(a->handler, (int)delta, thishandled);
144 
145 		if (delta < nmi_longest_ns || delta < a->max_duration)
146 			continue;
147 
148 		a->max_duration = delta;
149 		irq_work_queue(&a->irq_work);
150 	}
151 
152 	rcu_read_unlock();
153 
154 	/* return total number of NMI events handled */
155 	return handled;
156 }
157 NOKPROBE_SYMBOL(nmi_handle);
158 
159 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
160 {
161 	struct nmi_desc *desc = nmi_to_desc(type);
162 	unsigned long flags;
163 
164 	if (!action->handler)
165 		return -EINVAL;
166 
167 	init_irq_work(&action->irq_work, nmi_max_handler);
168 
169 	raw_spin_lock_irqsave(&desc->lock, flags);
170 
171 	/*
172 	 * Indicate if there are multiple registrations on the
173 	 * internal NMI handler call chains (SERR and IO_CHECK).
174 	 */
175 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
176 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
177 
178 	/*
179 	 * some handlers need to be executed first otherwise a fake
180 	 * event confuses some handlers (kdump uses this flag)
181 	 */
182 	if (action->flags & NMI_FLAG_FIRST)
183 		list_add_rcu(&action->list, &desc->head);
184 	else
185 		list_add_tail_rcu(&action->list, &desc->head);
186 
187 	raw_spin_unlock_irqrestore(&desc->lock, flags);
188 	return 0;
189 }
190 EXPORT_SYMBOL(__register_nmi_handler);
191 
192 void unregister_nmi_handler(unsigned int type, const char *name)
193 {
194 	struct nmi_desc *desc = nmi_to_desc(type);
195 	struct nmiaction *n;
196 	unsigned long flags;
197 
198 	raw_spin_lock_irqsave(&desc->lock, flags);
199 
200 	list_for_each_entry_rcu(n, &desc->head, list) {
201 		/*
202 		 * the name passed in to describe the nmi handler
203 		 * is used as the lookup key
204 		 */
205 		if (!strcmp(n->name, name)) {
206 			WARN(in_nmi(),
207 				"Trying to free NMI (%s) from NMI context!\n", n->name);
208 			list_del_rcu(&n->list);
209 			break;
210 		}
211 	}
212 
213 	raw_spin_unlock_irqrestore(&desc->lock, flags);
214 	synchronize_rcu();
215 }
216 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
217 
218 static void
219 pci_serr_error(unsigned char reason, struct pt_regs *regs)
220 {
221 	/* check to see if anyone registered against these types of errors */
222 	if (nmi_handle(NMI_SERR, regs))
223 		return;
224 
225 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
226 		 reason, smp_processor_id());
227 
228 	if (panic_on_unrecovered_nmi)
229 		nmi_panic(regs, "NMI: Not continuing");
230 
231 	pr_emerg("Dazed and confused, but trying to continue\n");
232 
233 	/* Clear and disable the PCI SERR error line. */
234 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
235 	outb(reason, NMI_REASON_PORT);
236 }
237 NOKPROBE_SYMBOL(pci_serr_error);
238 
239 static void
240 io_check_error(unsigned char reason, struct pt_regs *regs)
241 {
242 	unsigned long i;
243 
244 	/* check to see if anyone registered against these types of errors */
245 	if (nmi_handle(NMI_IO_CHECK, regs))
246 		return;
247 
248 	pr_emerg(
249 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
250 		 reason, smp_processor_id());
251 	show_regs(regs);
252 
253 	if (panic_on_io_nmi) {
254 		nmi_panic(regs, "NMI IOCK error: Not continuing");
255 
256 		/*
257 		 * If we end up here, it means we have received an NMI while
258 		 * processing panic(). Simply return without delaying and
259 		 * re-enabling NMIs.
260 		 */
261 		return;
262 	}
263 
264 	/* Re-enable the IOCK line, wait for a few seconds */
265 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
266 	outb(reason, NMI_REASON_PORT);
267 
268 	i = 20000;
269 	while (--i) {
270 		touch_nmi_watchdog();
271 		udelay(100);
272 	}
273 
274 	reason &= ~NMI_REASON_CLEAR_IOCHK;
275 	outb(reason, NMI_REASON_PORT);
276 }
277 NOKPROBE_SYMBOL(io_check_error);
278 
279 static void
280 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
281 {
282 	int handled;
283 
284 	/*
285 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
286 	 * Of course this makes having multiple 'unknown' handlers useless
287 	 * as only the first one is ever run (unless it can actually determine
288 	 * if it caused the NMI)
289 	 */
290 	handled = nmi_handle(NMI_UNKNOWN, regs);
291 	if (handled) {
292 		__this_cpu_add(nmi_stats.unknown, handled);
293 		return;
294 	}
295 
296 	__this_cpu_add(nmi_stats.unknown, 1);
297 
298 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
299 		 reason, smp_processor_id());
300 
301 	pr_emerg("Do you have a strange power saving mode enabled?\n");
302 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
303 		nmi_panic(regs, "NMI: Not continuing");
304 
305 	pr_emerg("Dazed and confused, but trying to continue\n");
306 }
307 NOKPROBE_SYMBOL(unknown_nmi_error);
308 
309 static DEFINE_PER_CPU(bool, swallow_nmi);
310 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
311 
312 static void default_do_nmi(struct pt_regs *regs)
313 {
314 	unsigned char reason = 0;
315 	int handled;
316 	bool b2b = false;
317 
318 	/*
319 	 * CPU-specific NMI must be processed before non-CPU-specific
320 	 * NMI, otherwise we may lose it, because the CPU-specific
321 	 * NMI can not be detected/processed on other CPUs.
322 	 */
323 
324 	/*
325 	 * Back-to-back NMIs are interesting because they can either
326 	 * be two NMI or more than two NMIs (any thing over two is dropped
327 	 * due to NMI being edge-triggered).  If this is the second half
328 	 * of the back-to-back NMI, assume we dropped things and process
329 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
330 	 */
331 	if (regs->ip == __this_cpu_read(last_nmi_rip))
332 		b2b = true;
333 	else
334 		__this_cpu_write(swallow_nmi, false);
335 
336 	__this_cpu_write(last_nmi_rip, regs->ip);
337 
338 	handled = nmi_handle(NMI_LOCAL, regs);
339 	__this_cpu_add(nmi_stats.normal, handled);
340 	if (handled) {
341 		/*
342 		 * There are cases when a NMI handler handles multiple
343 		 * events in the current NMI.  One of these events may
344 		 * be queued for in the next NMI.  Because the event is
345 		 * already handled, the next NMI will result in an unknown
346 		 * NMI.  Instead lets flag this for a potential NMI to
347 		 * swallow.
348 		 */
349 		if (handled > 1)
350 			__this_cpu_write(swallow_nmi, true);
351 		return;
352 	}
353 
354 	/*
355 	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
356 	 *
357 	 * Another CPU may be processing panic routines while holding
358 	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
359 	 * and if so, call its callback directly.  If there is no CPU preparing
360 	 * crash dump, we simply loop here.
361 	 */
362 	while (!raw_spin_trylock(&nmi_reason_lock)) {
363 		run_crash_ipi_callback(regs);
364 		cpu_relax();
365 	}
366 
367 	reason = x86_platform.get_nmi_reason();
368 
369 	if (reason & NMI_REASON_MASK) {
370 		if (reason & NMI_REASON_SERR)
371 			pci_serr_error(reason, regs);
372 		else if (reason & NMI_REASON_IOCHK)
373 			io_check_error(reason, regs);
374 #ifdef CONFIG_X86_32
375 		/*
376 		 * Reassert NMI in case it became active
377 		 * meanwhile as it's edge-triggered:
378 		 */
379 		reassert_nmi();
380 #endif
381 		__this_cpu_add(nmi_stats.external, 1);
382 		raw_spin_unlock(&nmi_reason_lock);
383 		return;
384 	}
385 	raw_spin_unlock(&nmi_reason_lock);
386 
387 	/*
388 	 * Only one NMI can be latched at a time.  To handle
389 	 * this we may process multiple nmi handlers at once to
390 	 * cover the case where an NMI is dropped.  The downside
391 	 * to this approach is we may process an NMI prematurely,
392 	 * while its real NMI is sitting latched.  This will cause
393 	 * an unknown NMI on the next run of the NMI processing.
394 	 *
395 	 * We tried to flag that condition above, by setting the
396 	 * swallow_nmi flag when we process more than one event.
397 	 * This condition is also only present on the second half
398 	 * of a back-to-back NMI, so we flag that condition too.
399 	 *
400 	 * If both are true, we assume we already processed this
401 	 * NMI previously and we swallow it.  Otherwise we reset
402 	 * the logic.
403 	 *
404 	 * There are scenarios where we may accidentally swallow
405 	 * a 'real' unknown NMI.  For example, while processing
406 	 * a perf NMI another perf NMI comes in along with a
407 	 * 'real' unknown NMI.  These two NMIs get combined into
408 	 * one (as descibed above).  When the next NMI gets
409 	 * processed, it will be flagged by perf as handled, but
410 	 * noone will know that there was a 'real' unknown NMI sent
411 	 * also.  As a result it gets swallowed.  Or if the first
412 	 * perf NMI returns two events handled then the second
413 	 * NMI will get eaten by the logic below, again losing a
414 	 * 'real' unknown NMI.  But this is the best we can do
415 	 * for now.
416 	 */
417 	if (b2b && __this_cpu_read(swallow_nmi))
418 		__this_cpu_add(nmi_stats.swallow, 1);
419 	else
420 		unknown_nmi_error(reason, regs);
421 }
422 NOKPROBE_SYMBOL(default_do_nmi);
423 
424 /*
425  * NMIs can page fault or hit breakpoints which will cause it to lose
426  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
427  *
428  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
429  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
430  * if the outer NMI came from kernel mode, but we can still nest if the
431  * outer NMI came from user mode.
432  *
433  * To handle these nested NMIs, we have three states:
434  *
435  *  1) not running
436  *  2) executing
437  *  3) latched
438  *
439  * When no NMI is in progress, it is in the "not running" state.
440  * When an NMI comes in, it goes into the "executing" state.
441  * Normally, if another NMI is triggered, it does not interrupt
442  * the running NMI and the HW will simply latch it so that when
443  * the first NMI finishes, it will restart the second NMI.
444  * (Note, the latch is binary, thus multiple NMIs triggering,
445  *  when one is running, are ignored. Only one NMI is restarted.)
446  *
447  * If an NMI executes an iret, another NMI can preempt it. We do not
448  * want to allow this new NMI to run, but we want to execute it when the
449  * first one finishes.  We set the state to "latched", and the exit of
450  * the first NMI will perform a dec_return, if the result is zero
451  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
452  * dec_return would have set the state to NMI_EXECUTING (what we want it
453  * to be when we are running). In this case, we simply jump back to
454  * rerun the NMI handler again, and restart the 'latched' NMI.
455  *
456  * No trap (breakpoint or page fault) should be hit before nmi_restart,
457  * thus there is no race between the first check of state for NOT_RUNNING
458  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
459  * at this point.
460  *
461  * In case the NMI takes a page fault, we need to save off the CR2
462  * because the NMI could have preempted another page fault and corrupt
463  * the CR2 that is about to be read. As nested NMIs must be restarted
464  * and they can not take breakpoints or page faults, the update of the
465  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
466  * Otherwise, there would be a race of another nested NMI coming in
467  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
468  */
469 enum nmi_states {
470 	NMI_NOT_RUNNING = 0,
471 	NMI_EXECUTING,
472 	NMI_LATCHED,
473 };
474 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
475 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
476 
477 #ifdef CONFIG_X86_64
478 /*
479  * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
480  * some care, the inner breakpoint will clobber the outer breakpoint's
481  * stack.
482  *
483  * If a breakpoint is being processed, and the debug stack is being
484  * used, if an NMI comes in and also hits a breakpoint, the stack
485  * pointer will be set to the same fixed address as the breakpoint that
486  * was interrupted, causing that stack to be corrupted. To handle this
487  * case, check if the stack that was interrupted is the debug stack, and
488  * if so, change the IDT so that new breakpoints will use the current
489  * stack and not switch to the fixed address. On return of the NMI,
490  * switch back to the original IDT.
491  */
492 static DEFINE_PER_CPU(int, update_debug_stack);
493 
494 static bool notrace is_debug_stack(unsigned long addr)
495 {
496 	struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks);
497 	unsigned long top = CEA_ESTACK_TOP(cs, DB);
498 	unsigned long bot = CEA_ESTACK_BOT(cs, DB1);
499 
500 	if (__this_cpu_read(debug_stack_usage))
501 		return true;
502 	/*
503 	 * Note, this covers the guard page between DB and DB1 as well to
504 	 * avoid two checks. But by all means @addr can never point into
505 	 * the guard page.
506 	 */
507 	return addr >= bot && addr < top;
508 }
509 NOKPROBE_SYMBOL(is_debug_stack);
510 #endif
511 
512 dotraplinkage notrace void
513 do_nmi(struct pt_regs *regs, long error_code)
514 {
515 	if (IS_ENABLED(CONFIG_SMP) && cpu_is_offline(smp_processor_id()))
516 		return;
517 
518 	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
519 		this_cpu_write(nmi_state, NMI_LATCHED);
520 		return;
521 	}
522 	this_cpu_write(nmi_state, NMI_EXECUTING);
523 	this_cpu_write(nmi_cr2, read_cr2());
524 nmi_restart:
525 
526 #ifdef CONFIG_X86_64
527 	/*
528 	 * If we interrupted a breakpoint, it is possible that
529 	 * the nmi handler will have breakpoints too. We need to
530 	 * change the IDT such that breakpoints that happen here
531 	 * continue to use the NMI stack.
532 	 */
533 	if (unlikely(is_debug_stack(regs->sp))) {
534 		debug_stack_set_zero();
535 		this_cpu_write(update_debug_stack, 1);
536 	}
537 #endif
538 
539 	nmi_enter();
540 
541 	inc_irq_stat(__nmi_count);
542 
543 	if (!ignore_nmis)
544 		default_do_nmi(regs);
545 
546 	nmi_exit();
547 
548 #ifdef CONFIG_X86_64
549 	if (unlikely(this_cpu_read(update_debug_stack))) {
550 		debug_stack_reset();
551 		this_cpu_write(update_debug_stack, 0);
552 	}
553 #endif
554 
555 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
556 		write_cr2(this_cpu_read(nmi_cr2));
557 	if (this_cpu_dec_return(nmi_state))
558 		goto nmi_restart;
559 
560 	if (user_mode(regs))
561 		mds_user_clear_cpu_buffers();
562 }
563 NOKPROBE_SYMBOL(do_nmi);
564 
565 void stop_nmi(void)
566 {
567 	ignore_nmis++;
568 }
569 
570 void restart_nmi(void)
571 {
572 	ignore_nmis--;
573 }
574 
575 /* reset the back-to-back NMI logic */
576 void local_touch_nmi(void)
577 {
578 	__this_cpu_write(last_nmi_rip, 0);
579 }
580 EXPORT_SYMBOL_GPL(local_touch_nmi);
581