xref: /openbmc/linux/arch/x86/kernel/nmi.c (revision 85250231)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/sched/debug.h>
17 #include <linux/nmi.h>
18 #include <linux/debugfs.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/ratelimit.h>
22 #include <linux/slab.h>
23 #include <linux/export.h>
24 #include <linux/sched/clock.h>
25 
26 #if defined(CONFIG_EDAC)
27 #include <linux/edac.h>
28 #endif
29 
30 #include <linux/atomic.h>
31 #include <asm/traps.h>
32 #include <asm/mach_traps.h>
33 #include <asm/nmi.h>
34 #include <asm/x86_init.h>
35 #include <asm/reboot.h>
36 #include <asm/cache.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/nmi.h>
40 
41 struct nmi_desc {
42 	spinlock_t lock;
43 	struct list_head head;
44 };
45 
46 static struct nmi_desc nmi_desc[NMI_MAX] =
47 {
48 	{
49 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
50 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
51 	},
52 	{
53 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
54 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
55 	},
56 	{
57 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
58 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
59 	},
60 	{
61 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
62 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
63 	},
64 
65 };
66 
67 struct nmi_stats {
68 	unsigned int normal;
69 	unsigned int unknown;
70 	unsigned int external;
71 	unsigned int swallow;
72 };
73 
74 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
75 
76 static int ignore_nmis __read_mostly;
77 
78 int unknown_nmi_panic;
79 /*
80  * Prevent NMI reason port (0x61) being accessed simultaneously, can
81  * only be used in NMI handler.
82  */
83 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
84 
85 static int __init setup_unknown_nmi_panic(char *str)
86 {
87 	unknown_nmi_panic = 1;
88 	return 1;
89 }
90 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
91 
92 #define nmi_to_desc(type) (&nmi_desc[type])
93 
94 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
95 
96 static int __init nmi_warning_debugfs(void)
97 {
98 	debugfs_create_u64("nmi_longest_ns", 0644,
99 			arch_debugfs_dir, &nmi_longest_ns);
100 	return 0;
101 }
102 fs_initcall(nmi_warning_debugfs);
103 
104 static void nmi_max_handler(struct irq_work *w)
105 {
106 	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
107 	int remainder_ns, decimal_msecs;
108 	u64 whole_msecs = ACCESS_ONCE(a->max_duration);
109 
110 	remainder_ns = do_div(whole_msecs, (1000 * 1000));
111 	decimal_msecs = remainder_ns / 1000;
112 
113 	printk_ratelimited(KERN_INFO
114 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
115 		a->handler, whole_msecs, decimal_msecs);
116 }
117 
118 static int nmi_handle(unsigned int type, struct pt_regs *regs)
119 {
120 	struct nmi_desc *desc = nmi_to_desc(type);
121 	struct nmiaction *a;
122 	int handled=0;
123 
124 	rcu_read_lock();
125 
126 	/*
127 	 * NMIs are edge-triggered, which means if you have enough
128 	 * of them concurrently, you can lose some because only one
129 	 * can be latched at any given time.  Walk the whole list
130 	 * to handle those situations.
131 	 */
132 	list_for_each_entry_rcu(a, &desc->head, list) {
133 		int thishandled;
134 		u64 delta;
135 
136 		delta = sched_clock();
137 		thishandled = a->handler(type, regs);
138 		handled += thishandled;
139 		delta = sched_clock() - delta;
140 		trace_nmi_handler(a->handler, (int)delta, thishandled);
141 
142 		if (delta < nmi_longest_ns || delta < a->max_duration)
143 			continue;
144 
145 		a->max_duration = delta;
146 		irq_work_queue(&a->irq_work);
147 	}
148 
149 	rcu_read_unlock();
150 
151 	/* return total number of NMI events handled */
152 	return handled;
153 }
154 NOKPROBE_SYMBOL(nmi_handle);
155 
156 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
157 {
158 	struct nmi_desc *desc = nmi_to_desc(type);
159 	unsigned long flags;
160 
161 	if (!action->handler)
162 		return -EINVAL;
163 
164 	init_irq_work(&action->irq_work, nmi_max_handler);
165 
166 	spin_lock_irqsave(&desc->lock, flags);
167 
168 	/*
169 	 * most handlers of type NMI_UNKNOWN never return because
170 	 * they just assume the NMI is theirs.  Just a sanity check
171 	 * to manage expectations
172 	 */
173 	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
174 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
175 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
176 
177 	/*
178 	 * some handlers need to be executed first otherwise a fake
179 	 * event confuses some handlers (kdump uses this flag)
180 	 */
181 	if (action->flags & NMI_FLAG_FIRST)
182 		list_add_rcu(&action->list, &desc->head);
183 	else
184 		list_add_tail_rcu(&action->list, &desc->head);
185 
186 	spin_unlock_irqrestore(&desc->lock, flags);
187 	return 0;
188 }
189 EXPORT_SYMBOL(__register_nmi_handler);
190 
191 void unregister_nmi_handler(unsigned int type, const char *name)
192 {
193 	struct nmi_desc *desc = nmi_to_desc(type);
194 	struct nmiaction *n;
195 	unsigned long flags;
196 
197 	spin_lock_irqsave(&desc->lock, flags);
198 
199 	list_for_each_entry_rcu(n, &desc->head, list) {
200 		/*
201 		 * the name passed in to describe the nmi handler
202 		 * is used as the lookup key
203 		 */
204 		if (!strcmp(n->name, name)) {
205 			WARN(in_nmi(),
206 				"Trying to free NMI (%s) from NMI context!\n", n->name);
207 			list_del_rcu(&n->list);
208 			break;
209 		}
210 	}
211 
212 	spin_unlock_irqrestore(&desc->lock, flags);
213 	synchronize_rcu();
214 }
215 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
216 
217 static void
218 pci_serr_error(unsigned char reason, struct pt_regs *regs)
219 {
220 	/* check to see if anyone registered against these types of errors */
221 	if (nmi_handle(NMI_SERR, regs))
222 		return;
223 
224 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
225 		 reason, smp_processor_id());
226 
227 	/*
228 	 * On some machines, PCI SERR line is used to report memory
229 	 * errors. EDAC makes use of it.
230 	 */
231 #if defined(CONFIG_EDAC)
232 	if (edac_handler_set()) {
233 		edac_atomic_assert_error();
234 		return;
235 	}
236 #endif
237 
238 	if (panic_on_unrecovered_nmi)
239 		nmi_panic(regs, "NMI: Not continuing");
240 
241 	pr_emerg("Dazed and confused, but trying to continue\n");
242 
243 	/* Clear and disable the PCI SERR error line. */
244 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
245 	outb(reason, NMI_REASON_PORT);
246 }
247 NOKPROBE_SYMBOL(pci_serr_error);
248 
249 static void
250 io_check_error(unsigned char reason, struct pt_regs *regs)
251 {
252 	unsigned long i;
253 
254 	/* check to see if anyone registered against these types of errors */
255 	if (nmi_handle(NMI_IO_CHECK, regs))
256 		return;
257 
258 	pr_emerg(
259 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
260 		 reason, smp_processor_id());
261 	show_regs(regs);
262 
263 	if (panic_on_io_nmi) {
264 		nmi_panic(regs, "NMI IOCK error: Not continuing");
265 
266 		/*
267 		 * If we end up here, it means we have received an NMI while
268 		 * processing panic(). Simply return without delaying and
269 		 * re-enabling NMIs.
270 		 */
271 		return;
272 	}
273 
274 	/* Re-enable the IOCK line, wait for a few seconds */
275 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
276 	outb(reason, NMI_REASON_PORT);
277 
278 	i = 20000;
279 	while (--i) {
280 		touch_nmi_watchdog();
281 		udelay(100);
282 	}
283 
284 	reason &= ~NMI_REASON_CLEAR_IOCHK;
285 	outb(reason, NMI_REASON_PORT);
286 }
287 NOKPROBE_SYMBOL(io_check_error);
288 
289 static void
290 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
291 {
292 	int handled;
293 
294 	/*
295 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
296 	 * Of course this makes having multiple 'unknown' handlers useless
297 	 * as only the first one is ever run (unless it can actually determine
298 	 * if it caused the NMI)
299 	 */
300 	handled = nmi_handle(NMI_UNKNOWN, regs);
301 	if (handled) {
302 		__this_cpu_add(nmi_stats.unknown, handled);
303 		return;
304 	}
305 
306 	__this_cpu_add(nmi_stats.unknown, 1);
307 
308 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
309 		 reason, smp_processor_id());
310 
311 	pr_emerg("Do you have a strange power saving mode enabled?\n");
312 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
313 		nmi_panic(regs, "NMI: Not continuing");
314 
315 	pr_emerg("Dazed and confused, but trying to continue\n");
316 }
317 NOKPROBE_SYMBOL(unknown_nmi_error);
318 
319 static DEFINE_PER_CPU(bool, swallow_nmi);
320 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
321 
322 static void default_do_nmi(struct pt_regs *regs)
323 {
324 	unsigned char reason = 0;
325 	int handled;
326 	bool b2b = false;
327 
328 	/*
329 	 * CPU-specific NMI must be processed before non-CPU-specific
330 	 * NMI, otherwise we may lose it, because the CPU-specific
331 	 * NMI can not be detected/processed on other CPUs.
332 	 */
333 
334 	/*
335 	 * Back-to-back NMIs are interesting because they can either
336 	 * be two NMI or more than two NMIs (any thing over two is dropped
337 	 * due to NMI being edge-triggered).  If this is the second half
338 	 * of the back-to-back NMI, assume we dropped things and process
339 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
340 	 */
341 	if (regs->ip == __this_cpu_read(last_nmi_rip))
342 		b2b = true;
343 	else
344 		__this_cpu_write(swallow_nmi, false);
345 
346 	__this_cpu_write(last_nmi_rip, regs->ip);
347 
348 	handled = nmi_handle(NMI_LOCAL, regs);
349 	__this_cpu_add(nmi_stats.normal, handled);
350 	if (handled) {
351 		/*
352 		 * There are cases when a NMI handler handles multiple
353 		 * events in the current NMI.  One of these events may
354 		 * be queued for in the next NMI.  Because the event is
355 		 * already handled, the next NMI will result in an unknown
356 		 * NMI.  Instead lets flag this for a potential NMI to
357 		 * swallow.
358 		 */
359 		if (handled > 1)
360 			__this_cpu_write(swallow_nmi, true);
361 		return;
362 	}
363 
364 	/*
365 	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
366 	 *
367 	 * Another CPU may be processing panic routines while holding
368 	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
369 	 * and if so, call its callback directly.  If there is no CPU preparing
370 	 * crash dump, we simply loop here.
371 	 */
372 	while (!raw_spin_trylock(&nmi_reason_lock)) {
373 		run_crash_ipi_callback(regs);
374 		cpu_relax();
375 	}
376 
377 	reason = x86_platform.get_nmi_reason();
378 
379 	if (reason & NMI_REASON_MASK) {
380 		if (reason & NMI_REASON_SERR)
381 			pci_serr_error(reason, regs);
382 		else if (reason & NMI_REASON_IOCHK)
383 			io_check_error(reason, regs);
384 #ifdef CONFIG_X86_32
385 		/*
386 		 * Reassert NMI in case it became active
387 		 * meanwhile as it's edge-triggered:
388 		 */
389 		reassert_nmi();
390 #endif
391 		__this_cpu_add(nmi_stats.external, 1);
392 		raw_spin_unlock(&nmi_reason_lock);
393 		return;
394 	}
395 	raw_spin_unlock(&nmi_reason_lock);
396 
397 	/*
398 	 * Only one NMI can be latched at a time.  To handle
399 	 * this we may process multiple nmi handlers at once to
400 	 * cover the case where an NMI is dropped.  The downside
401 	 * to this approach is we may process an NMI prematurely,
402 	 * while its real NMI is sitting latched.  This will cause
403 	 * an unknown NMI on the next run of the NMI processing.
404 	 *
405 	 * We tried to flag that condition above, by setting the
406 	 * swallow_nmi flag when we process more than one event.
407 	 * This condition is also only present on the second half
408 	 * of a back-to-back NMI, so we flag that condition too.
409 	 *
410 	 * If both are true, we assume we already processed this
411 	 * NMI previously and we swallow it.  Otherwise we reset
412 	 * the logic.
413 	 *
414 	 * There are scenarios where we may accidentally swallow
415 	 * a 'real' unknown NMI.  For example, while processing
416 	 * a perf NMI another perf NMI comes in along with a
417 	 * 'real' unknown NMI.  These two NMIs get combined into
418 	 * one (as descibed above).  When the next NMI gets
419 	 * processed, it will be flagged by perf as handled, but
420 	 * noone will know that there was a 'real' unknown NMI sent
421 	 * also.  As a result it gets swallowed.  Or if the first
422 	 * perf NMI returns two events handled then the second
423 	 * NMI will get eaten by the logic below, again losing a
424 	 * 'real' unknown NMI.  But this is the best we can do
425 	 * for now.
426 	 */
427 	if (b2b && __this_cpu_read(swallow_nmi))
428 		__this_cpu_add(nmi_stats.swallow, 1);
429 	else
430 		unknown_nmi_error(reason, regs);
431 }
432 NOKPROBE_SYMBOL(default_do_nmi);
433 
434 /*
435  * NMIs can page fault or hit breakpoints which will cause it to lose
436  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
437  *
438  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
439  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
440  * if the outer NMI came from kernel mode, but we can still nest if the
441  * outer NMI came from user mode.
442  *
443  * To handle these nested NMIs, we have three states:
444  *
445  *  1) not running
446  *  2) executing
447  *  3) latched
448  *
449  * When no NMI is in progress, it is in the "not running" state.
450  * When an NMI comes in, it goes into the "executing" state.
451  * Normally, if another NMI is triggered, it does not interrupt
452  * the running NMI and the HW will simply latch it so that when
453  * the first NMI finishes, it will restart the second NMI.
454  * (Note, the latch is binary, thus multiple NMIs triggering,
455  *  when one is running, are ignored. Only one NMI is restarted.)
456  *
457  * If an NMI executes an iret, another NMI can preempt it. We do not
458  * want to allow this new NMI to run, but we want to execute it when the
459  * first one finishes.  We set the state to "latched", and the exit of
460  * the first NMI will perform a dec_return, if the result is zero
461  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
462  * dec_return would have set the state to NMI_EXECUTING (what we want it
463  * to be when we are running). In this case, we simply jump back to
464  * rerun the NMI handler again, and restart the 'latched' NMI.
465  *
466  * No trap (breakpoint or page fault) should be hit before nmi_restart,
467  * thus there is no race between the first check of state for NOT_RUNNING
468  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
469  * at this point.
470  *
471  * In case the NMI takes a page fault, we need to save off the CR2
472  * because the NMI could have preempted another page fault and corrupt
473  * the CR2 that is about to be read. As nested NMIs must be restarted
474  * and they can not take breakpoints or page faults, the update of the
475  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
476  * Otherwise, there would be a race of another nested NMI coming in
477  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
478  */
479 enum nmi_states {
480 	NMI_NOT_RUNNING = 0,
481 	NMI_EXECUTING,
482 	NMI_LATCHED,
483 };
484 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
485 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
486 
487 #ifdef CONFIG_X86_64
488 /*
489  * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
490  * some care, the inner breakpoint will clobber the outer breakpoint's
491  * stack.
492  *
493  * If a breakpoint is being processed, and the debug stack is being
494  * used, if an NMI comes in and also hits a breakpoint, the stack
495  * pointer will be set to the same fixed address as the breakpoint that
496  * was interrupted, causing that stack to be corrupted. To handle this
497  * case, check if the stack that was interrupted is the debug stack, and
498  * if so, change the IDT so that new breakpoints will use the current
499  * stack and not switch to the fixed address. On return of the NMI,
500  * switch back to the original IDT.
501  */
502 static DEFINE_PER_CPU(int, update_debug_stack);
503 #endif
504 
505 dotraplinkage notrace void
506 do_nmi(struct pt_regs *regs, long error_code)
507 {
508 	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
509 		this_cpu_write(nmi_state, NMI_LATCHED);
510 		return;
511 	}
512 	this_cpu_write(nmi_state, NMI_EXECUTING);
513 	this_cpu_write(nmi_cr2, read_cr2());
514 nmi_restart:
515 
516 #ifdef CONFIG_X86_64
517 	/*
518 	 * If we interrupted a breakpoint, it is possible that
519 	 * the nmi handler will have breakpoints too. We need to
520 	 * change the IDT such that breakpoints that happen here
521 	 * continue to use the NMI stack.
522 	 */
523 	if (unlikely(is_debug_stack(regs->sp))) {
524 		debug_stack_set_zero();
525 		this_cpu_write(update_debug_stack, 1);
526 	}
527 #endif
528 
529 	nmi_enter();
530 
531 	inc_irq_stat(__nmi_count);
532 
533 	if (!ignore_nmis)
534 		default_do_nmi(regs);
535 
536 	nmi_exit();
537 
538 #ifdef CONFIG_X86_64
539 	if (unlikely(this_cpu_read(update_debug_stack))) {
540 		debug_stack_reset();
541 		this_cpu_write(update_debug_stack, 0);
542 	}
543 #endif
544 
545 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
546 		write_cr2(this_cpu_read(nmi_cr2));
547 	if (this_cpu_dec_return(nmi_state))
548 		goto nmi_restart;
549 }
550 NOKPROBE_SYMBOL(do_nmi);
551 
552 void stop_nmi(void)
553 {
554 	ignore_nmis++;
555 }
556 
557 void restart_nmi(void)
558 {
559 	ignore_nmis--;
560 }
561 
562 /* reset the back-to-back NMI logic */
563 void local_touch_nmi(void)
564 {
565 	__this_cpu_write(last_nmi_rip, 0);
566 }
567 EXPORT_SYMBOL_GPL(local_touch_nmi);
568