xref: /openbmc/linux/arch/x86/kernel/nmi.c (revision 78700c0a)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/slab.h>
21 #include <linux/export.h>
22 
23 #if defined(CONFIG_EDAC)
24 #include <linux/edac.h>
25 #endif
26 
27 #include <linux/atomic.h>
28 #include <asm/traps.h>
29 #include <asm/mach_traps.h>
30 #include <asm/nmi.h>
31 #include <asm/x86_init.h>
32 #include <asm/reboot.h>
33 #include <asm/cache.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/nmi.h>
37 
38 struct nmi_desc {
39 	spinlock_t lock;
40 	struct list_head head;
41 };
42 
43 static struct nmi_desc nmi_desc[NMI_MAX] =
44 {
45 	{
46 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
47 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
48 	},
49 	{
50 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
51 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
52 	},
53 	{
54 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
55 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
56 	},
57 	{
58 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
59 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
60 	},
61 
62 };
63 
64 struct nmi_stats {
65 	unsigned int normal;
66 	unsigned int unknown;
67 	unsigned int external;
68 	unsigned int swallow;
69 };
70 
71 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
72 
73 static int ignore_nmis __read_mostly;
74 
75 int unknown_nmi_panic;
76 /*
77  * Prevent NMI reason port (0x61) being accessed simultaneously, can
78  * only be used in NMI handler.
79  */
80 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
81 
82 static int __init setup_unknown_nmi_panic(char *str)
83 {
84 	unknown_nmi_panic = 1;
85 	return 1;
86 }
87 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
88 
89 #define nmi_to_desc(type) (&nmi_desc[type])
90 
91 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
92 
93 static int __init nmi_warning_debugfs(void)
94 {
95 	debugfs_create_u64("nmi_longest_ns", 0644,
96 			arch_debugfs_dir, &nmi_longest_ns);
97 	return 0;
98 }
99 fs_initcall(nmi_warning_debugfs);
100 
101 static void nmi_max_handler(struct irq_work *w)
102 {
103 	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
104 	int remainder_ns, decimal_msecs;
105 	u64 whole_msecs = ACCESS_ONCE(a->max_duration);
106 
107 	remainder_ns = do_div(whole_msecs, (1000 * 1000));
108 	decimal_msecs = remainder_ns / 1000;
109 
110 	printk_ratelimited(KERN_INFO
111 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
112 		a->handler, whole_msecs, decimal_msecs);
113 }
114 
115 static int nmi_handle(unsigned int type, struct pt_regs *regs)
116 {
117 	struct nmi_desc *desc = nmi_to_desc(type);
118 	struct nmiaction *a;
119 	int handled=0;
120 
121 	rcu_read_lock();
122 
123 	/*
124 	 * NMIs are edge-triggered, which means if you have enough
125 	 * of them concurrently, you can lose some because only one
126 	 * can be latched at any given time.  Walk the whole list
127 	 * to handle those situations.
128 	 */
129 	list_for_each_entry_rcu(a, &desc->head, list) {
130 		int thishandled;
131 		u64 delta;
132 
133 		delta = sched_clock();
134 		thishandled = a->handler(type, regs);
135 		handled += thishandled;
136 		delta = sched_clock() - delta;
137 		trace_nmi_handler(a->handler, (int)delta, thishandled);
138 
139 		if (delta < nmi_longest_ns || delta < a->max_duration)
140 			continue;
141 
142 		a->max_duration = delta;
143 		irq_work_queue(&a->irq_work);
144 	}
145 
146 	rcu_read_unlock();
147 
148 	/* return total number of NMI events handled */
149 	return handled;
150 }
151 NOKPROBE_SYMBOL(nmi_handle);
152 
153 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
154 {
155 	struct nmi_desc *desc = nmi_to_desc(type);
156 	unsigned long flags;
157 
158 	if (!action->handler)
159 		return -EINVAL;
160 
161 	init_irq_work(&action->irq_work, nmi_max_handler);
162 
163 	spin_lock_irqsave(&desc->lock, flags);
164 
165 	/*
166 	 * most handlers of type NMI_UNKNOWN never return because
167 	 * they just assume the NMI is theirs.  Just a sanity check
168 	 * to manage expectations
169 	 */
170 	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
171 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
172 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
173 
174 	/*
175 	 * some handlers need to be executed first otherwise a fake
176 	 * event confuses some handlers (kdump uses this flag)
177 	 */
178 	if (action->flags & NMI_FLAG_FIRST)
179 		list_add_rcu(&action->list, &desc->head);
180 	else
181 		list_add_tail_rcu(&action->list, &desc->head);
182 
183 	spin_unlock_irqrestore(&desc->lock, flags);
184 	return 0;
185 }
186 EXPORT_SYMBOL(__register_nmi_handler);
187 
188 void unregister_nmi_handler(unsigned int type, const char *name)
189 {
190 	struct nmi_desc *desc = nmi_to_desc(type);
191 	struct nmiaction *n;
192 	unsigned long flags;
193 
194 	spin_lock_irqsave(&desc->lock, flags);
195 
196 	list_for_each_entry_rcu(n, &desc->head, list) {
197 		/*
198 		 * the name passed in to describe the nmi handler
199 		 * is used as the lookup key
200 		 */
201 		if (!strcmp(n->name, name)) {
202 			WARN(in_nmi(),
203 				"Trying to free NMI (%s) from NMI context!\n", n->name);
204 			list_del_rcu(&n->list);
205 			break;
206 		}
207 	}
208 
209 	spin_unlock_irqrestore(&desc->lock, flags);
210 	synchronize_rcu();
211 }
212 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
213 
214 static void
215 pci_serr_error(unsigned char reason, struct pt_regs *regs)
216 {
217 	/* check to see if anyone registered against these types of errors */
218 	if (nmi_handle(NMI_SERR, regs))
219 		return;
220 
221 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
222 		 reason, smp_processor_id());
223 
224 	/*
225 	 * On some machines, PCI SERR line is used to report memory
226 	 * errors. EDAC makes use of it.
227 	 */
228 #if defined(CONFIG_EDAC)
229 	if (edac_handler_set()) {
230 		edac_atomic_assert_error();
231 		return;
232 	}
233 #endif
234 
235 	if (panic_on_unrecovered_nmi)
236 		nmi_panic(regs, "NMI: Not continuing");
237 
238 	pr_emerg("Dazed and confused, but trying to continue\n");
239 
240 	/* Clear and disable the PCI SERR error line. */
241 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
242 	outb(reason, NMI_REASON_PORT);
243 }
244 NOKPROBE_SYMBOL(pci_serr_error);
245 
246 static void
247 io_check_error(unsigned char reason, struct pt_regs *regs)
248 {
249 	unsigned long i;
250 
251 	/* check to see if anyone registered against these types of errors */
252 	if (nmi_handle(NMI_IO_CHECK, regs))
253 		return;
254 
255 	pr_emerg(
256 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
257 		 reason, smp_processor_id());
258 	show_regs(regs);
259 
260 	if (panic_on_io_nmi) {
261 		nmi_panic(regs, "NMI IOCK error: Not continuing");
262 
263 		/*
264 		 * If we end up here, it means we have received an NMI while
265 		 * processing panic(). Simply return without delaying and
266 		 * re-enabling NMIs.
267 		 */
268 		return;
269 	}
270 
271 	/* Re-enable the IOCK line, wait for a few seconds */
272 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
273 	outb(reason, NMI_REASON_PORT);
274 
275 	i = 20000;
276 	while (--i) {
277 		touch_nmi_watchdog();
278 		udelay(100);
279 	}
280 
281 	reason &= ~NMI_REASON_CLEAR_IOCHK;
282 	outb(reason, NMI_REASON_PORT);
283 }
284 NOKPROBE_SYMBOL(io_check_error);
285 
286 static void
287 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
288 {
289 	int handled;
290 
291 	/*
292 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
293 	 * Of course this makes having multiple 'unknown' handlers useless
294 	 * as only the first one is ever run (unless it can actually determine
295 	 * if it caused the NMI)
296 	 */
297 	handled = nmi_handle(NMI_UNKNOWN, regs);
298 	if (handled) {
299 		__this_cpu_add(nmi_stats.unknown, handled);
300 		return;
301 	}
302 
303 	__this_cpu_add(nmi_stats.unknown, 1);
304 
305 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
306 		 reason, smp_processor_id());
307 
308 	pr_emerg("Do you have a strange power saving mode enabled?\n");
309 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
310 		nmi_panic(regs, "NMI: Not continuing");
311 
312 	pr_emerg("Dazed and confused, but trying to continue\n");
313 }
314 NOKPROBE_SYMBOL(unknown_nmi_error);
315 
316 static DEFINE_PER_CPU(bool, swallow_nmi);
317 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
318 
319 static void default_do_nmi(struct pt_regs *regs)
320 {
321 	unsigned char reason = 0;
322 	int handled;
323 	bool b2b = false;
324 
325 	/*
326 	 * CPU-specific NMI must be processed before non-CPU-specific
327 	 * NMI, otherwise we may lose it, because the CPU-specific
328 	 * NMI can not be detected/processed on other CPUs.
329 	 */
330 
331 	/*
332 	 * Back-to-back NMIs are interesting because they can either
333 	 * be two NMI or more than two NMIs (any thing over two is dropped
334 	 * due to NMI being edge-triggered).  If this is the second half
335 	 * of the back-to-back NMI, assume we dropped things and process
336 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
337 	 */
338 	if (regs->ip == __this_cpu_read(last_nmi_rip))
339 		b2b = true;
340 	else
341 		__this_cpu_write(swallow_nmi, false);
342 
343 	__this_cpu_write(last_nmi_rip, regs->ip);
344 
345 	handled = nmi_handle(NMI_LOCAL, regs);
346 	__this_cpu_add(nmi_stats.normal, handled);
347 	if (handled) {
348 		/*
349 		 * There are cases when a NMI handler handles multiple
350 		 * events in the current NMI.  One of these events may
351 		 * be queued for in the next NMI.  Because the event is
352 		 * already handled, the next NMI will result in an unknown
353 		 * NMI.  Instead lets flag this for a potential NMI to
354 		 * swallow.
355 		 */
356 		if (handled > 1)
357 			__this_cpu_write(swallow_nmi, true);
358 		return;
359 	}
360 
361 	/*
362 	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
363 	 *
364 	 * Another CPU may be processing panic routines while holding
365 	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
366 	 * and if so, call its callback directly.  If there is no CPU preparing
367 	 * crash dump, we simply loop here.
368 	 */
369 	while (!raw_spin_trylock(&nmi_reason_lock)) {
370 		run_crash_ipi_callback(regs);
371 		cpu_relax();
372 	}
373 
374 	reason = x86_platform.get_nmi_reason();
375 
376 	if (reason & NMI_REASON_MASK) {
377 		if (reason & NMI_REASON_SERR)
378 			pci_serr_error(reason, regs);
379 		else if (reason & NMI_REASON_IOCHK)
380 			io_check_error(reason, regs);
381 #ifdef CONFIG_X86_32
382 		/*
383 		 * Reassert NMI in case it became active
384 		 * meanwhile as it's edge-triggered:
385 		 */
386 		reassert_nmi();
387 #endif
388 		__this_cpu_add(nmi_stats.external, 1);
389 		raw_spin_unlock(&nmi_reason_lock);
390 		return;
391 	}
392 	raw_spin_unlock(&nmi_reason_lock);
393 
394 	/*
395 	 * Only one NMI can be latched at a time.  To handle
396 	 * this we may process multiple nmi handlers at once to
397 	 * cover the case where an NMI is dropped.  The downside
398 	 * to this approach is we may process an NMI prematurely,
399 	 * while its real NMI is sitting latched.  This will cause
400 	 * an unknown NMI on the next run of the NMI processing.
401 	 *
402 	 * We tried to flag that condition above, by setting the
403 	 * swallow_nmi flag when we process more than one event.
404 	 * This condition is also only present on the second half
405 	 * of a back-to-back NMI, so we flag that condition too.
406 	 *
407 	 * If both are true, we assume we already processed this
408 	 * NMI previously and we swallow it.  Otherwise we reset
409 	 * the logic.
410 	 *
411 	 * There are scenarios where we may accidentally swallow
412 	 * a 'real' unknown NMI.  For example, while processing
413 	 * a perf NMI another perf NMI comes in along with a
414 	 * 'real' unknown NMI.  These two NMIs get combined into
415 	 * one (as descibed above).  When the next NMI gets
416 	 * processed, it will be flagged by perf as handled, but
417 	 * noone will know that there was a 'real' unknown NMI sent
418 	 * also.  As a result it gets swallowed.  Or if the first
419 	 * perf NMI returns two events handled then the second
420 	 * NMI will get eaten by the logic below, again losing a
421 	 * 'real' unknown NMI.  But this is the best we can do
422 	 * for now.
423 	 */
424 	if (b2b && __this_cpu_read(swallow_nmi))
425 		__this_cpu_add(nmi_stats.swallow, 1);
426 	else
427 		unknown_nmi_error(reason, regs);
428 }
429 NOKPROBE_SYMBOL(default_do_nmi);
430 
431 /*
432  * NMIs can page fault or hit breakpoints which will cause it to lose
433  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
434  *
435  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
436  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
437  * if the outer NMI came from kernel mode, but we can still nest if the
438  * outer NMI came from user mode.
439  *
440  * To handle these nested NMIs, we have three states:
441  *
442  *  1) not running
443  *  2) executing
444  *  3) latched
445  *
446  * When no NMI is in progress, it is in the "not running" state.
447  * When an NMI comes in, it goes into the "executing" state.
448  * Normally, if another NMI is triggered, it does not interrupt
449  * the running NMI and the HW will simply latch it so that when
450  * the first NMI finishes, it will restart the second NMI.
451  * (Note, the latch is binary, thus multiple NMIs triggering,
452  *  when one is running, are ignored. Only one NMI is restarted.)
453  *
454  * If an NMI executes an iret, another NMI can preempt it. We do not
455  * want to allow this new NMI to run, but we want to execute it when the
456  * first one finishes.  We set the state to "latched", and the exit of
457  * the first NMI will perform a dec_return, if the result is zero
458  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
459  * dec_return would have set the state to NMI_EXECUTING (what we want it
460  * to be when we are running). In this case, we simply jump back to
461  * rerun the NMI handler again, and restart the 'latched' NMI.
462  *
463  * No trap (breakpoint or page fault) should be hit before nmi_restart,
464  * thus there is no race between the first check of state for NOT_RUNNING
465  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
466  * at this point.
467  *
468  * In case the NMI takes a page fault, we need to save off the CR2
469  * because the NMI could have preempted another page fault and corrupt
470  * the CR2 that is about to be read. As nested NMIs must be restarted
471  * and they can not take breakpoints or page faults, the update of the
472  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
473  * Otherwise, there would be a race of another nested NMI coming in
474  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
475  */
476 enum nmi_states {
477 	NMI_NOT_RUNNING = 0,
478 	NMI_EXECUTING,
479 	NMI_LATCHED,
480 };
481 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
482 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
483 
484 #ifdef CONFIG_X86_64
485 /*
486  * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
487  * some care, the inner breakpoint will clobber the outer breakpoint's
488  * stack.
489  *
490  * If a breakpoint is being processed, and the debug stack is being
491  * used, if an NMI comes in and also hits a breakpoint, the stack
492  * pointer will be set to the same fixed address as the breakpoint that
493  * was interrupted, causing that stack to be corrupted. To handle this
494  * case, check if the stack that was interrupted is the debug stack, and
495  * if so, change the IDT so that new breakpoints will use the current
496  * stack and not switch to the fixed address. On return of the NMI,
497  * switch back to the original IDT.
498  */
499 static DEFINE_PER_CPU(int, update_debug_stack);
500 #endif
501 
502 dotraplinkage notrace void
503 do_nmi(struct pt_regs *regs, long error_code)
504 {
505 	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
506 		this_cpu_write(nmi_state, NMI_LATCHED);
507 		return;
508 	}
509 	this_cpu_write(nmi_state, NMI_EXECUTING);
510 	this_cpu_write(nmi_cr2, read_cr2());
511 nmi_restart:
512 
513 #ifdef CONFIG_X86_64
514 	/*
515 	 * If we interrupted a breakpoint, it is possible that
516 	 * the nmi handler will have breakpoints too. We need to
517 	 * change the IDT such that breakpoints that happen here
518 	 * continue to use the NMI stack.
519 	 */
520 	if (unlikely(is_debug_stack(regs->sp))) {
521 		debug_stack_set_zero();
522 		this_cpu_write(update_debug_stack, 1);
523 	}
524 #endif
525 
526 	nmi_enter();
527 
528 	inc_irq_stat(__nmi_count);
529 
530 	if (!ignore_nmis)
531 		default_do_nmi(regs);
532 
533 	nmi_exit();
534 
535 #ifdef CONFIG_X86_64
536 	if (unlikely(this_cpu_read(update_debug_stack))) {
537 		debug_stack_reset();
538 		this_cpu_write(update_debug_stack, 0);
539 	}
540 #endif
541 
542 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
543 		write_cr2(this_cpu_read(nmi_cr2));
544 	if (this_cpu_dec_return(nmi_state))
545 		goto nmi_restart;
546 }
547 NOKPROBE_SYMBOL(do_nmi);
548 
549 void stop_nmi(void)
550 {
551 	ignore_nmis++;
552 }
553 
554 void restart_nmi(void)
555 {
556 	ignore_nmis--;
557 }
558 
559 /* reset the back-to-back NMI logic */
560 void local_touch_nmi(void)
561 {
562 	__this_cpu_write(last_nmi_rip, 0);
563 }
564 EXPORT_SYMBOL_GPL(local_touch_nmi);
565