1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * Copyright (C) 2011 Don Zickus Red Hat, Inc. 5 * 6 * Pentium III FXSR, SSE support 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 10 /* 11 * Handle hardware traps and faults. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/kprobes.h> 15 #include <linux/kdebug.h> 16 #include <linux/nmi.h> 17 #include <linux/debugfs.h> 18 #include <linux/delay.h> 19 #include <linux/hardirq.h> 20 #include <linux/slab.h> 21 #include <linux/export.h> 22 23 #if defined(CONFIG_EDAC) 24 #include <linux/edac.h> 25 #endif 26 27 #include <linux/atomic.h> 28 #include <asm/traps.h> 29 #include <asm/mach_traps.h> 30 #include <asm/nmi.h> 31 #include <asm/x86_init.h> 32 #include <asm/reboot.h> 33 #include <asm/cache.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/nmi.h> 37 38 struct nmi_desc { 39 spinlock_t lock; 40 struct list_head head; 41 }; 42 43 static struct nmi_desc nmi_desc[NMI_MAX] = 44 { 45 { 46 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), 47 .head = LIST_HEAD_INIT(nmi_desc[0].head), 48 }, 49 { 50 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), 51 .head = LIST_HEAD_INIT(nmi_desc[1].head), 52 }, 53 { 54 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), 55 .head = LIST_HEAD_INIT(nmi_desc[2].head), 56 }, 57 { 58 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), 59 .head = LIST_HEAD_INIT(nmi_desc[3].head), 60 }, 61 62 }; 63 64 struct nmi_stats { 65 unsigned int normal; 66 unsigned int unknown; 67 unsigned int external; 68 unsigned int swallow; 69 }; 70 71 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); 72 73 static int ignore_nmis __read_mostly; 74 75 int unknown_nmi_panic; 76 /* 77 * Prevent NMI reason port (0x61) being accessed simultaneously, can 78 * only be used in NMI handler. 79 */ 80 static DEFINE_RAW_SPINLOCK(nmi_reason_lock); 81 82 static int __init setup_unknown_nmi_panic(char *str) 83 { 84 unknown_nmi_panic = 1; 85 return 1; 86 } 87 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 88 89 #define nmi_to_desc(type) (&nmi_desc[type]) 90 91 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; 92 93 static int __init nmi_warning_debugfs(void) 94 { 95 debugfs_create_u64("nmi_longest_ns", 0644, 96 arch_debugfs_dir, &nmi_longest_ns); 97 return 0; 98 } 99 fs_initcall(nmi_warning_debugfs); 100 101 static void nmi_max_handler(struct irq_work *w) 102 { 103 struct nmiaction *a = container_of(w, struct nmiaction, irq_work); 104 int remainder_ns, decimal_msecs; 105 u64 whole_msecs = ACCESS_ONCE(a->max_duration); 106 107 remainder_ns = do_div(whole_msecs, (1000 * 1000)); 108 decimal_msecs = remainder_ns / 1000; 109 110 printk_ratelimited(KERN_INFO 111 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", 112 a->handler, whole_msecs, decimal_msecs); 113 } 114 115 static int nmi_handle(unsigned int type, struct pt_regs *regs) 116 { 117 struct nmi_desc *desc = nmi_to_desc(type); 118 struct nmiaction *a; 119 int handled=0; 120 121 rcu_read_lock(); 122 123 /* 124 * NMIs are edge-triggered, which means if you have enough 125 * of them concurrently, you can lose some because only one 126 * can be latched at any given time. Walk the whole list 127 * to handle those situations. 128 */ 129 list_for_each_entry_rcu(a, &desc->head, list) { 130 int thishandled; 131 u64 delta; 132 133 delta = sched_clock(); 134 thishandled = a->handler(type, regs); 135 handled += thishandled; 136 delta = sched_clock() - delta; 137 trace_nmi_handler(a->handler, (int)delta, thishandled); 138 139 if (delta < nmi_longest_ns || delta < a->max_duration) 140 continue; 141 142 a->max_duration = delta; 143 irq_work_queue(&a->irq_work); 144 } 145 146 rcu_read_unlock(); 147 148 /* return total number of NMI events handled */ 149 return handled; 150 } 151 NOKPROBE_SYMBOL(nmi_handle); 152 153 int __register_nmi_handler(unsigned int type, struct nmiaction *action) 154 { 155 struct nmi_desc *desc = nmi_to_desc(type); 156 unsigned long flags; 157 158 if (!action->handler) 159 return -EINVAL; 160 161 init_irq_work(&action->irq_work, nmi_max_handler); 162 163 spin_lock_irqsave(&desc->lock, flags); 164 165 /* 166 * most handlers of type NMI_UNKNOWN never return because 167 * they just assume the NMI is theirs. Just a sanity check 168 * to manage expectations 169 */ 170 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head)); 171 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); 172 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); 173 174 /* 175 * some handlers need to be executed first otherwise a fake 176 * event confuses some handlers (kdump uses this flag) 177 */ 178 if (action->flags & NMI_FLAG_FIRST) 179 list_add_rcu(&action->list, &desc->head); 180 else 181 list_add_tail_rcu(&action->list, &desc->head); 182 183 spin_unlock_irqrestore(&desc->lock, flags); 184 return 0; 185 } 186 EXPORT_SYMBOL(__register_nmi_handler); 187 188 void unregister_nmi_handler(unsigned int type, const char *name) 189 { 190 struct nmi_desc *desc = nmi_to_desc(type); 191 struct nmiaction *n; 192 unsigned long flags; 193 194 spin_lock_irqsave(&desc->lock, flags); 195 196 list_for_each_entry_rcu(n, &desc->head, list) { 197 /* 198 * the name passed in to describe the nmi handler 199 * is used as the lookup key 200 */ 201 if (!strcmp(n->name, name)) { 202 WARN(in_nmi(), 203 "Trying to free NMI (%s) from NMI context!\n", n->name); 204 list_del_rcu(&n->list); 205 break; 206 } 207 } 208 209 spin_unlock_irqrestore(&desc->lock, flags); 210 synchronize_rcu(); 211 } 212 EXPORT_SYMBOL_GPL(unregister_nmi_handler); 213 214 static void 215 pci_serr_error(unsigned char reason, struct pt_regs *regs) 216 { 217 /* check to see if anyone registered against these types of errors */ 218 if (nmi_handle(NMI_SERR, regs)) 219 return; 220 221 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", 222 reason, smp_processor_id()); 223 224 /* 225 * On some machines, PCI SERR line is used to report memory 226 * errors. EDAC makes use of it. 227 */ 228 #if defined(CONFIG_EDAC) 229 if (edac_handler_set()) { 230 edac_atomic_assert_error(); 231 return; 232 } 233 #endif 234 235 if (panic_on_unrecovered_nmi) 236 nmi_panic(regs, "NMI: Not continuing"); 237 238 pr_emerg("Dazed and confused, but trying to continue\n"); 239 240 /* Clear and disable the PCI SERR error line. */ 241 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; 242 outb(reason, NMI_REASON_PORT); 243 } 244 NOKPROBE_SYMBOL(pci_serr_error); 245 246 static void 247 io_check_error(unsigned char reason, struct pt_regs *regs) 248 { 249 unsigned long i; 250 251 /* check to see if anyone registered against these types of errors */ 252 if (nmi_handle(NMI_IO_CHECK, regs)) 253 return; 254 255 pr_emerg( 256 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", 257 reason, smp_processor_id()); 258 show_regs(regs); 259 260 if (panic_on_io_nmi) { 261 nmi_panic(regs, "NMI IOCK error: Not continuing"); 262 263 /* 264 * If we end up here, it means we have received an NMI while 265 * processing panic(). Simply return without delaying and 266 * re-enabling NMIs. 267 */ 268 return; 269 } 270 271 /* Re-enable the IOCK line, wait for a few seconds */ 272 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; 273 outb(reason, NMI_REASON_PORT); 274 275 i = 20000; 276 while (--i) { 277 touch_nmi_watchdog(); 278 udelay(100); 279 } 280 281 reason &= ~NMI_REASON_CLEAR_IOCHK; 282 outb(reason, NMI_REASON_PORT); 283 } 284 NOKPROBE_SYMBOL(io_check_error); 285 286 static void 287 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 288 { 289 int handled; 290 291 /* 292 * Use 'false' as back-to-back NMIs are dealt with one level up. 293 * Of course this makes having multiple 'unknown' handlers useless 294 * as only the first one is ever run (unless it can actually determine 295 * if it caused the NMI) 296 */ 297 handled = nmi_handle(NMI_UNKNOWN, regs); 298 if (handled) { 299 __this_cpu_add(nmi_stats.unknown, handled); 300 return; 301 } 302 303 __this_cpu_add(nmi_stats.unknown, 1); 304 305 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 306 reason, smp_processor_id()); 307 308 pr_emerg("Do you have a strange power saving mode enabled?\n"); 309 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 310 nmi_panic(regs, "NMI: Not continuing"); 311 312 pr_emerg("Dazed and confused, but trying to continue\n"); 313 } 314 NOKPROBE_SYMBOL(unknown_nmi_error); 315 316 static DEFINE_PER_CPU(bool, swallow_nmi); 317 static DEFINE_PER_CPU(unsigned long, last_nmi_rip); 318 319 static void default_do_nmi(struct pt_regs *regs) 320 { 321 unsigned char reason = 0; 322 int handled; 323 bool b2b = false; 324 325 /* 326 * CPU-specific NMI must be processed before non-CPU-specific 327 * NMI, otherwise we may lose it, because the CPU-specific 328 * NMI can not be detected/processed on other CPUs. 329 */ 330 331 /* 332 * Back-to-back NMIs are interesting because they can either 333 * be two NMI or more than two NMIs (any thing over two is dropped 334 * due to NMI being edge-triggered). If this is the second half 335 * of the back-to-back NMI, assume we dropped things and process 336 * more handlers. Otherwise reset the 'swallow' NMI behaviour 337 */ 338 if (regs->ip == __this_cpu_read(last_nmi_rip)) 339 b2b = true; 340 else 341 __this_cpu_write(swallow_nmi, false); 342 343 __this_cpu_write(last_nmi_rip, regs->ip); 344 345 handled = nmi_handle(NMI_LOCAL, regs); 346 __this_cpu_add(nmi_stats.normal, handled); 347 if (handled) { 348 /* 349 * There are cases when a NMI handler handles multiple 350 * events in the current NMI. One of these events may 351 * be queued for in the next NMI. Because the event is 352 * already handled, the next NMI will result in an unknown 353 * NMI. Instead lets flag this for a potential NMI to 354 * swallow. 355 */ 356 if (handled > 1) 357 __this_cpu_write(swallow_nmi, true); 358 return; 359 } 360 361 /* 362 * Non-CPU-specific NMI: NMI sources can be processed on any CPU. 363 * 364 * Another CPU may be processing panic routines while holding 365 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, 366 * and if so, call its callback directly. If there is no CPU preparing 367 * crash dump, we simply loop here. 368 */ 369 while (!raw_spin_trylock(&nmi_reason_lock)) { 370 run_crash_ipi_callback(regs); 371 cpu_relax(); 372 } 373 374 reason = x86_platform.get_nmi_reason(); 375 376 if (reason & NMI_REASON_MASK) { 377 if (reason & NMI_REASON_SERR) 378 pci_serr_error(reason, regs); 379 else if (reason & NMI_REASON_IOCHK) 380 io_check_error(reason, regs); 381 #ifdef CONFIG_X86_32 382 /* 383 * Reassert NMI in case it became active 384 * meanwhile as it's edge-triggered: 385 */ 386 reassert_nmi(); 387 #endif 388 __this_cpu_add(nmi_stats.external, 1); 389 raw_spin_unlock(&nmi_reason_lock); 390 return; 391 } 392 raw_spin_unlock(&nmi_reason_lock); 393 394 /* 395 * Only one NMI can be latched at a time. To handle 396 * this we may process multiple nmi handlers at once to 397 * cover the case where an NMI is dropped. The downside 398 * to this approach is we may process an NMI prematurely, 399 * while its real NMI is sitting latched. This will cause 400 * an unknown NMI on the next run of the NMI processing. 401 * 402 * We tried to flag that condition above, by setting the 403 * swallow_nmi flag when we process more than one event. 404 * This condition is also only present on the second half 405 * of a back-to-back NMI, so we flag that condition too. 406 * 407 * If both are true, we assume we already processed this 408 * NMI previously and we swallow it. Otherwise we reset 409 * the logic. 410 * 411 * There are scenarios where we may accidentally swallow 412 * a 'real' unknown NMI. For example, while processing 413 * a perf NMI another perf NMI comes in along with a 414 * 'real' unknown NMI. These two NMIs get combined into 415 * one (as descibed above). When the next NMI gets 416 * processed, it will be flagged by perf as handled, but 417 * noone will know that there was a 'real' unknown NMI sent 418 * also. As a result it gets swallowed. Or if the first 419 * perf NMI returns two events handled then the second 420 * NMI will get eaten by the logic below, again losing a 421 * 'real' unknown NMI. But this is the best we can do 422 * for now. 423 */ 424 if (b2b && __this_cpu_read(swallow_nmi)) 425 __this_cpu_add(nmi_stats.swallow, 1); 426 else 427 unknown_nmi_error(reason, regs); 428 } 429 NOKPROBE_SYMBOL(default_do_nmi); 430 431 /* 432 * NMIs can page fault or hit breakpoints which will cause it to lose 433 * its NMI context with the CPU when the breakpoint or page fault does an IRET. 434 * 435 * As a result, NMIs can nest if NMIs get unmasked due an IRET during 436 * NMI processing. On x86_64, the asm glue protects us from nested NMIs 437 * if the outer NMI came from kernel mode, but we can still nest if the 438 * outer NMI came from user mode. 439 * 440 * To handle these nested NMIs, we have three states: 441 * 442 * 1) not running 443 * 2) executing 444 * 3) latched 445 * 446 * When no NMI is in progress, it is in the "not running" state. 447 * When an NMI comes in, it goes into the "executing" state. 448 * Normally, if another NMI is triggered, it does not interrupt 449 * the running NMI and the HW will simply latch it so that when 450 * the first NMI finishes, it will restart the second NMI. 451 * (Note, the latch is binary, thus multiple NMIs triggering, 452 * when one is running, are ignored. Only one NMI is restarted.) 453 * 454 * If an NMI executes an iret, another NMI can preempt it. We do not 455 * want to allow this new NMI to run, but we want to execute it when the 456 * first one finishes. We set the state to "latched", and the exit of 457 * the first NMI will perform a dec_return, if the result is zero 458 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the 459 * dec_return would have set the state to NMI_EXECUTING (what we want it 460 * to be when we are running). In this case, we simply jump back to 461 * rerun the NMI handler again, and restart the 'latched' NMI. 462 * 463 * No trap (breakpoint or page fault) should be hit before nmi_restart, 464 * thus there is no race between the first check of state for NOT_RUNNING 465 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs 466 * at this point. 467 * 468 * In case the NMI takes a page fault, we need to save off the CR2 469 * because the NMI could have preempted another page fault and corrupt 470 * the CR2 that is about to be read. As nested NMIs must be restarted 471 * and they can not take breakpoints or page faults, the update of the 472 * CR2 must be done before converting the nmi state back to NOT_RUNNING. 473 * Otherwise, there would be a race of another nested NMI coming in 474 * after setting state to NOT_RUNNING but before updating the nmi_cr2. 475 */ 476 enum nmi_states { 477 NMI_NOT_RUNNING = 0, 478 NMI_EXECUTING, 479 NMI_LATCHED, 480 }; 481 static DEFINE_PER_CPU(enum nmi_states, nmi_state); 482 static DEFINE_PER_CPU(unsigned long, nmi_cr2); 483 484 #ifdef CONFIG_X86_64 485 /* 486 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without 487 * some care, the inner breakpoint will clobber the outer breakpoint's 488 * stack. 489 * 490 * If a breakpoint is being processed, and the debug stack is being 491 * used, if an NMI comes in and also hits a breakpoint, the stack 492 * pointer will be set to the same fixed address as the breakpoint that 493 * was interrupted, causing that stack to be corrupted. To handle this 494 * case, check if the stack that was interrupted is the debug stack, and 495 * if so, change the IDT so that new breakpoints will use the current 496 * stack and not switch to the fixed address. On return of the NMI, 497 * switch back to the original IDT. 498 */ 499 static DEFINE_PER_CPU(int, update_debug_stack); 500 #endif 501 502 dotraplinkage notrace void 503 do_nmi(struct pt_regs *regs, long error_code) 504 { 505 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { 506 this_cpu_write(nmi_state, NMI_LATCHED); 507 return; 508 } 509 this_cpu_write(nmi_state, NMI_EXECUTING); 510 this_cpu_write(nmi_cr2, read_cr2()); 511 nmi_restart: 512 513 #ifdef CONFIG_X86_64 514 /* 515 * If we interrupted a breakpoint, it is possible that 516 * the nmi handler will have breakpoints too. We need to 517 * change the IDT such that breakpoints that happen here 518 * continue to use the NMI stack. 519 */ 520 if (unlikely(is_debug_stack(regs->sp))) { 521 debug_stack_set_zero(); 522 this_cpu_write(update_debug_stack, 1); 523 } 524 #endif 525 526 nmi_enter(); 527 528 inc_irq_stat(__nmi_count); 529 530 if (!ignore_nmis) 531 default_do_nmi(regs); 532 533 nmi_exit(); 534 535 #ifdef CONFIG_X86_64 536 if (unlikely(this_cpu_read(update_debug_stack))) { 537 debug_stack_reset(); 538 this_cpu_write(update_debug_stack, 0); 539 } 540 #endif 541 542 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) 543 write_cr2(this_cpu_read(nmi_cr2)); 544 if (this_cpu_dec_return(nmi_state)) 545 goto nmi_restart; 546 } 547 NOKPROBE_SYMBOL(do_nmi); 548 549 void stop_nmi(void) 550 { 551 ignore_nmis++; 552 } 553 554 void restart_nmi(void) 555 { 556 ignore_nmis--; 557 } 558 559 /* reset the back-to-back NMI logic */ 560 void local_touch_nmi(void) 561 { 562 __this_cpu_write(last_nmi_rip, 0); 563 } 564 EXPORT_SYMBOL_GPL(local_touch_nmi); 565