1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * Copyright (C) 2011 Don Zickus Red Hat, Inc. 5 * 6 * Pentium III FXSR, SSE support 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 10 /* 11 * Handle hardware traps and faults. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/kprobes.h> 15 #include <linux/kdebug.h> 16 #include <linux/sched/debug.h> 17 #include <linux/nmi.h> 18 #include <linux/debugfs.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/ratelimit.h> 22 #include <linux/slab.h> 23 #include <linux/export.h> 24 #include <linux/sched/clock.h> 25 26 #if defined(CONFIG_EDAC) 27 #include <linux/edac.h> 28 #endif 29 30 #include <linux/atomic.h> 31 #include <asm/traps.h> 32 #include <asm/mach_traps.h> 33 #include <asm/nmi.h> 34 #include <asm/x86_init.h> 35 #include <asm/reboot.h> 36 #include <asm/cache.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/nmi.h> 40 41 struct nmi_desc { 42 spinlock_t lock; 43 struct list_head head; 44 }; 45 46 static struct nmi_desc nmi_desc[NMI_MAX] = 47 { 48 { 49 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), 50 .head = LIST_HEAD_INIT(nmi_desc[0].head), 51 }, 52 { 53 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), 54 .head = LIST_HEAD_INIT(nmi_desc[1].head), 55 }, 56 { 57 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), 58 .head = LIST_HEAD_INIT(nmi_desc[2].head), 59 }, 60 { 61 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), 62 .head = LIST_HEAD_INIT(nmi_desc[3].head), 63 }, 64 65 }; 66 67 struct nmi_stats { 68 unsigned int normal; 69 unsigned int unknown; 70 unsigned int external; 71 unsigned int swallow; 72 }; 73 74 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); 75 76 static int ignore_nmis __read_mostly; 77 78 int unknown_nmi_panic; 79 /* 80 * Prevent NMI reason port (0x61) being accessed simultaneously, can 81 * only be used in NMI handler. 82 */ 83 static DEFINE_RAW_SPINLOCK(nmi_reason_lock); 84 85 static int __init setup_unknown_nmi_panic(char *str) 86 { 87 unknown_nmi_panic = 1; 88 return 1; 89 } 90 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 91 92 #define nmi_to_desc(type) (&nmi_desc[type]) 93 94 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; 95 96 static int __init nmi_warning_debugfs(void) 97 { 98 debugfs_create_u64("nmi_longest_ns", 0644, 99 arch_debugfs_dir, &nmi_longest_ns); 100 return 0; 101 } 102 fs_initcall(nmi_warning_debugfs); 103 104 static void nmi_max_handler(struct irq_work *w) 105 { 106 struct nmiaction *a = container_of(w, struct nmiaction, irq_work); 107 int remainder_ns, decimal_msecs; 108 u64 whole_msecs = ACCESS_ONCE(a->max_duration); 109 110 remainder_ns = do_div(whole_msecs, (1000 * 1000)); 111 decimal_msecs = remainder_ns / 1000; 112 113 printk_ratelimited(KERN_INFO 114 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", 115 a->handler, whole_msecs, decimal_msecs); 116 } 117 118 static int nmi_handle(unsigned int type, struct pt_regs *regs) 119 { 120 struct nmi_desc *desc = nmi_to_desc(type); 121 struct nmiaction *a; 122 int handled=0; 123 124 rcu_read_lock(); 125 126 /* 127 * NMIs are edge-triggered, which means if you have enough 128 * of them concurrently, you can lose some because only one 129 * can be latched at any given time. Walk the whole list 130 * to handle those situations. 131 */ 132 list_for_each_entry_rcu(a, &desc->head, list) { 133 int thishandled; 134 u64 delta; 135 136 delta = sched_clock(); 137 thishandled = a->handler(type, regs); 138 handled += thishandled; 139 delta = sched_clock() - delta; 140 trace_nmi_handler(a->handler, (int)delta, thishandled); 141 142 if (delta < nmi_longest_ns || delta < a->max_duration) 143 continue; 144 145 a->max_duration = delta; 146 irq_work_queue(&a->irq_work); 147 } 148 149 rcu_read_unlock(); 150 151 /* return total number of NMI events handled */ 152 return handled; 153 } 154 NOKPROBE_SYMBOL(nmi_handle); 155 156 int __register_nmi_handler(unsigned int type, struct nmiaction *action) 157 { 158 struct nmi_desc *desc = nmi_to_desc(type); 159 unsigned long flags; 160 161 if (!action->handler) 162 return -EINVAL; 163 164 init_irq_work(&action->irq_work, nmi_max_handler); 165 166 spin_lock_irqsave(&desc->lock, flags); 167 168 /* 169 * most handlers of type NMI_UNKNOWN never return because 170 * they just assume the NMI is theirs. Just a sanity check 171 * to manage expectations 172 */ 173 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head)); 174 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); 175 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); 176 177 /* 178 * some handlers need to be executed first otherwise a fake 179 * event confuses some handlers (kdump uses this flag) 180 */ 181 if (action->flags & NMI_FLAG_FIRST) 182 list_add_rcu(&action->list, &desc->head); 183 else 184 list_add_tail_rcu(&action->list, &desc->head); 185 186 spin_unlock_irqrestore(&desc->lock, flags); 187 return 0; 188 } 189 EXPORT_SYMBOL(__register_nmi_handler); 190 191 void unregister_nmi_handler(unsigned int type, const char *name) 192 { 193 struct nmi_desc *desc = nmi_to_desc(type); 194 struct nmiaction *n; 195 unsigned long flags; 196 197 spin_lock_irqsave(&desc->lock, flags); 198 199 list_for_each_entry_rcu(n, &desc->head, list) { 200 /* 201 * the name passed in to describe the nmi handler 202 * is used as the lookup key 203 */ 204 if (!strcmp(n->name, name)) { 205 WARN(in_nmi(), 206 "Trying to free NMI (%s) from NMI context!\n", n->name); 207 list_del_rcu(&n->list); 208 break; 209 } 210 } 211 212 spin_unlock_irqrestore(&desc->lock, flags); 213 synchronize_rcu(); 214 } 215 EXPORT_SYMBOL_GPL(unregister_nmi_handler); 216 217 static void 218 pci_serr_error(unsigned char reason, struct pt_regs *regs) 219 { 220 /* check to see if anyone registered against these types of errors */ 221 if (nmi_handle(NMI_SERR, regs)) 222 return; 223 224 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", 225 reason, smp_processor_id()); 226 227 /* 228 * On some machines, PCI SERR line is used to report memory 229 * errors. EDAC makes use of it. 230 */ 231 #if defined(CONFIG_EDAC) 232 if (edac_handler_set()) { 233 edac_atomic_assert_error(); 234 return; 235 } 236 #endif 237 238 if (panic_on_unrecovered_nmi) 239 nmi_panic(regs, "NMI: Not continuing"); 240 241 pr_emerg("Dazed and confused, but trying to continue\n"); 242 243 /* Clear and disable the PCI SERR error line. */ 244 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; 245 outb(reason, NMI_REASON_PORT); 246 } 247 NOKPROBE_SYMBOL(pci_serr_error); 248 249 static void 250 io_check_error(unsigned char reason, struct pt_regs *regs) 251 { 252 unsigned long i; 253 254 /* check to see if anyone registered against these types of errors */ 255 if (nmi_handle(NMI_IO_CHECK, regs)) 256 return; 257 258 pr_emerg( 259 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", 260 reason, smp_processor_id()); 261 show_regs(regs); 262 263 if (panic_on_io_nmi) { 264 nmi_panic(regs, "NMI IOCK error: Not continuing"); 265 266 /* 267 * If we end up here, it means we have received an NMI while 268 * processing panic(). Simply return without delaying and 269 * re-enabling NMIs. 270 */ 271 return; 272 } 273 274 /* Re-enable the IOCK line, wait for a few seconds */ 275 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; 276 outb(reason, NMI_REASON_PORT); 277 278 i = 20000; 279 while (--i) { 280 touch_nmi_watchdog(); 281 udelay(100); 282 } 283 284 reason &= ~NMI_REASON_CLEAR_IOCHK; 285 outb(reason, NMI_REASON_PORT); 286 } 287 NOKPROBE_SYMBOL(io_check_error); 288 289 static void 290 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 291 { 292 int handled; 293 294 /* 295 * Use 'false' as back-to-back NMIs are dealt with one level up. 296 * Of course this makes having multiple 'unknown' handlers useless 297 * as only the first one is ever run (unless it can actually determine 298 * if it caused the NMI) 299 */ 300 handled = nmi_handle(NMI_UNKNOWN, regs); 301 if (handled) { 302 __this_cpu_add(nmi_stats.unknown, handled); 303 return; 304 } 305 306 __this_cpu_add(nmi_stats.unknown, 1); 307 308 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 309 reason, smp_processor_id()); 310 311 pr_emerg("Do you have a strange power saving mode enabled?\n"); 312 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 313 nmi_panic(regs, "NMI: Not continuing"); 314 315 pr_emerg("Dazed and confused, but trying to continue\n"); 316 } 317 NOKPROBE_SYMBOL(unknown_nmi_error); 318 319 static DEFINE_PER_CPU(bool, swallow_nmi); 320 static DEFINE_PER_CPU(unsigned long, last_nmi_rip); 321 322 static void default_do_nmi(struct pt_regs *regs) 323 { 324 unsigned char reason = 0; 325 int handled; 326 bool b2b = false; 327 328 /* 329 * CPU-specific NMI must be processed before non-CPU-specific 330 * NMI, otherwise we may lose it, because the CPU-specific 331 * NMI can not be detected/processed on other CPUs. 332 */ 333 334 /* 335 * Back-to-back NMIs are interesting because they can either 336 * be two NMI or more than two NMIs (any thing over two is dropped 337 * due to NMI being edge-triggered). If this is the second half 338 * of the back-to-back NMI, assume we dropped things and process 339 * more handlers. Otherwise reset the 'swallow' NMI behaviour 340 */ 341 if (regs->ip == __this_cpu_read(last_nmi_rip)) 342 b2b = true; 343 else 344 __this_cpu_write(swallow_nmi, false); 345 346 __this_cpu_write(last_nmi_rip, regs->ip); 347 348 handled = nmi_handle(NMI_LOCAL, regs); 349 __this_cpu_add(nmi_stats.normal, handled); 350 if (handled) { 351 /* 352 * There are cases when a NMI handler handles multiple 353 * events in the current NMI. One of these events may 354 * be queued for in the next NMI. Because the event is 355 * already handled, the next NMI will result in an unknown 356 * NMI. Instead lets flag this for a potential NMI to 357 * swallow. 358 */ 359 if (handled > 1) 360 __this_cpu_write(swallow_nmi, true); 361 return; 362 } 363 364 /* 365 * Non-CPU-specific NMI: NMI sources can be processed on any CPU. 366 * 367 * Another CPU may be processing panic routines while holding 368 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, 369 * and if so, call its callback directly. If there is no CPU preparing 370 * crash dump, we simply loop here. 371 */ 372 while (!raw_spin_trylock(&nmi_reason_lock)) { 373 run_crash_ipi_callback(regs); 374 cpu_relax(); 375 } 376 377 reason = x86_platform.get_nmi_reason(); 378 379 if (reason & NMI_REASON_MASK) { 380 if (reason & NMI_REASON_SERR) 381 pci_serr_error(reason, regs); 382 else if (reason & NMI_REASON_IOCHK) 383 io_check_error(reason, regs); 384 #ifdef CONFIG_X86_32 385 /* 386 * Reassert NMI in case it became active 387 * meanwhile as it's edge-triggered: 388 */ 389 reassert_nmi(); 390 #endif 391 __this_cpu_add(nmi_stats.external, 1); 392 raw_spin_unlock(&nmi_reason_lock); 393 return; 394 } 395 raw_spin_unlock(&nmi_reason_lock); 396 397 /* 398 * Only one NMI can be latched at a time. To handle 399 * this we may process multiple nmi handlers at once to 400 * cover the case where an NMI is dropped. The downside 401 * to this approach is we may process an NMI prematurely, 402 * while its real NMI is sitting latched. This will cause 403 * an unknown NMI on the next run of the NMI processing. 404 * 405 * We tried to flag that condition above, by setting the 406 * swallow_nmi flag when we process more than one event. 407 * This condition is also only present on the second half 408 * of a back-to-back NMI, so we flag that condition too. 409 * 410 * If both are true, we assume we already processed this 411 * NMI previously and we swallow it. Otherwise we reset 412 * the logic. 413 * 414 * There are scenarios where we may accidentally swallow 415 * a 'real' unknown NMI. For example, while processing 416 * a perf NMI another perf NMI comes in along with a 417 * 'real' unknown NMI. These two NMIs get combined into 418 * one (as descibed above). When the next NMI gets 419 * processed, it will be flagged by perf as handled, but 420 * noone will know that there was a 'real' unknown NMI sent 421 * also. As a result it gets swallowed. Or if the first 422 * perf NMI returns two events handled then the second 423 * NMI will get eaten by the logic below, again losing a 424 * 'real' unknown NMI. But this is the best we can do 425 * for now. 426 */ 427 if (b2b && __this_cpu_read(swallow_nmi)) 428 __this_cpu_add(nmi_stats.swallow, 1); 429 else 430 unknown_nmi_error(reason, regs); 431 } 432 NOKPROBE_SYMBOL(default_do_nmi); 433 434 /* 435 * NMIs can page fault or hit breakpoints which will cause it to lose 436 * its NMI context with the CPU when the breakpoint or page fault does an IRET. 437 * 438 * As a result, NMIs can nest if NMIs get unmasked due an IRET during 439 * NMI processing. On x86_64, the asm glue protects us from nested NMIs 440 * if the outer NMI came from kernel mode, but we can still nest if the 441 * outer NMI came from user mode. 442 * 443 * To handle these nested NMIs, we have three states: 444 * 445 * 1) not running 446 * 2) executing 447 * 3) latched 448 * 449 * When no NMI is in progress, it is in the "not running" state. 450 * When an NMI comes in, it goes into the "executing" state. 451 * Normally, if another NMI is triggered, it does not interrupt 452 * the running NMI and the HW will simply latch it so that when 453 * the first NMI finishes, it will restart the second NMI. 454 * (Note, the latch is binary, thus multiple NMIs triggering, 455 * when one is running, are ignored. Only one NMI is restarted.) 456 * 457 * If an NMI executes an iret, another NMI can preempt it. We do not 458 * want to allow this new NMI to run, but we want to execute it when the 459 * first one finishes. We set the state to "latched", and the exit of 460 * the first NMI will perform a dec_return, if the result is zero 461 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the 462 * dec_return would have set the state to NMI_EXECUTING (what we want it 463 * to be when we are running). In this case, we simply jump back to 464 * rerun the NMI handler again, and restart the 'latched' NMI. 465 * 466 * No trap (breakpoint or page fault) should be hit before nmi_restart, 467 * thus there is no race between the first check of state for NOT_RUNNING 468 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs 469 * at this point. 470 * 471 * In case the NMI takes a page fault, we need to save off the CR2 472 * because the NMI could have preempted another page fault and corrupt 473 * the CR2 that is about to be read. As nested NMIs must be restarted 474 * and they can not take breakpoints or page faults, the update of the 475 * CR2 must be done before converting the nmi state back to NOT_RUNNING. 476 * Otherwise, there would be a race of another nested NMI coming in 477 * after setting state to NOT_RUNNING but before updating the nmi_cr2. 478 */ 479 enum nmi_states { 480 NMI_NOT_RUNNING = 0, 481 NMI_EXECUTING, 482 NMI_LATCHED, 483 }; 484 static DEFINE_PER_CPU(enum nmi_states, nmi_state); 485 static DEFINE_PER_CPU(unsigned long, nmi_cr2); 486 487 #ifdef CONFIG_X86_64 488 /* 489 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without 490 * some care, the inner breakpoint will clobber the outer breakpoint's 491 * stack. 492 * 493 * If a breakpoint is being processed, and the debug stack is being 494 * used, if an NMI comes in and also hits a breakpoint, the stack 495 * pointer will be set to the same fixed address as the breakpoint that 496 * was interrupted, causing that stack to be corrupted. To handle this 497 * case, check if the stack that was interrupted is the debug stack, and 498 * if so, change the IDT so that new breakpoints will use the current 499 * stack and not switch to the fixed address. On return of the NMI, 500 * switch back to the original IDT. 501 */ 502 static DEFINE_PER_CPU(int, update_debug_stack); 503 #endif 504 505 dotraplinkage notrace void 506 do_nmi(struct pt_regs *regs, long error_code) 507 { 508 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { 509 this_cpu_write(nmi_state, NMI_LATCHED); 510 return; 511 } 512 this_cpu_write(nmi_state, NMI_EXECUTING); 513 this_cpu_write(nmi_cr2, read_cr2()); 514 nmi_restart: 515 516 #ifdef CONFIG_X86_64 517 /* 518 * If we interrupted a breakpoint, it is possible that 519 * the nmi handler will have breakpoints too. We need to 520 * change the IDT such that breakpoints that happen here 521 * continue to use the NMI stack. 522 */ 523 if (unlikely(is_debug_stack(regs->sp))) { 524 debug_stack_set_zero(); 525 this_cpu_write(update_debug_stack, 1); 526 } 527 #endif 528 529 nmi_enter(); 530 531 inc_irq_stat(__nmi_count); 532 533 if (!ignore_nmis) 534 default_do_nmi(regs); 535 536 nmi_exit(); 537 538 #ifdef CONFIG_X86_64 539 if (unlikely(this_cpu_read(update_debug_stack))) { 540 debug_stack_reset(); 541 this_cpu_write(update_debug_stack, 0); 542 } 543 #endif 544 545 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) 546 write_cr2(this_cpu_read(nmi_cr2)); 547 if (this_cpu_dec_return(nmi_state)) 548 goto nmi_restart; 549 } 550 NOKPROBE_SYMBOL(do_nmi); 551 552 void stop_nmi(void) 553 { 554 ignore_nmis++; 555 } 556 557 void restart_nmi(void) 558 { 559 ignore_nmis--; 560 } 561 562 /* reset the back-to-back NMI logic */ 563 void local_touch_nmi(void) 564 { 565 __this_cpu_write(last_nmi_rip, 0); 566 } 567 EXPORT_SYMBOL_GPL(local_touch_nmi); 568