xref: /openbmc/linux/arch/x86/kernel/nmi.c (revision 07c7c6bf)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/sched/debug.h>
17 #include <linux/nmi.h>
18 #include <linux/debugfs.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/ratelimit.h>
22 #include <linux/slab.h>
23 #include <linux/export.h>
24 #include <linux/atomic.h>
25 #include <linux/sched/clock.h>
26 
27 #if defined(CONFIG_EDAC)
28 #include <linux/edac.h>
29 #endif
30 
31 #include <asm/cpu_entry_area.h>
32 #include <asm/traps.h>
33 #include <asm/mach_traps.h>
34 #include <asm/nmi.h>
35 #include <asm/x86_init.h>
36 #include <asm/reboot.h>
37 #include <asm/cache.h>
38 #include <asm/nospec-branch.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/nmi.h>
42 
43 struct nmi_desc {
44 	raw_spinlock_t lock;
45 	struct list_head head;
46 };
47 
48 static struct nmi_desc nmi_desc[NMI_MAX] =
49 {
50 	{
51 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
52 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
53 	},
54 	{
55 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
56 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
57 	},
58 	{
59 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
60 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
61 	},
62 	{
63 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
64 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
65 	},
66 
67 };
68 
69 struct nmi_stats {
70 	unsigned int normal;
71 	unsigned int unknown;
72 	unsigned int external;
73 	unsigned int swallow;
74 };
75 
76 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
77 
78 static int ignore_nmis __read_mostly;
79 
80 int unknown_nmi_panic;
81 /*
82  * Prevent NMI reason port (0x61) being accessed simultaneously, can
83  * only be used in NMI handler.
84  */
85 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
86 
87 static int __init setup_unknown_nmi_panic(char *str)
88 {
89 	unknown_nmi_panic = 1;
90 	return 1;
91 }
92 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
93 
94 #define nmi_to_desc(type) (&nmi_desc[type])
95 
96 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
97 
98 static int __init nmi_warning_debugfs(void)
99 {
100 	debugfs_create_u64("nmi_longest_ns", 0644,
101 			arch_debugfs_dir, &nmi_longest_ns);
102 	return 0;
103 }
104 fs_initcall(nmi_warning_debugfs);
105 
106 static void nmi_max_handler(struct irq_work *w)
107 {
108 	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
109 	int remainder_ns, decimal_msecs;
110 	u64 whole_msecs = READ_ONCE(a->max_duration);
111 
112 	remainder_ns = do_div(whole_msecs, (1000 * 1000));
113 	decimal_msecs = remainder_ns / 1000;
114 
115 	printk_ratelimited(KERN_INFO
116 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
117 		a->handler, whole_msecs, decimal_msecs);
118 }
119 
120 static int nmi_handle(unsigned int type, struct pt_regs *regs)
121 {
122 	struct nmi_desc *desc = nmi_to_desc(type);
123 	struct nmiaction *a;
124 	int handled=0;
125 
126 	rcu_read_lock();
127 
128 	/*
129 	 * NMIs are edge-triggered, which means if you have enough
130 	 * of them concurrently, you can lose some because only one
131 	 * can be latched at any given time.  Walk the whole list
132 	 * to handle those situations.
133 	 */
134 	list_for_each_entry_rcu(a, &desc->head, list) {
135 		int thishandled;
136 		u64 delta;
137 
138 		delta = sched_clock();
139 		thishandled = a->handler(type, regs);
140 		handled += thishandled;
141 		delta = sched_clock() - delta;
142 		trace_nmi_handler(a->handler, (int)delta, thishandled);
143 
144 		if (delta < nmi_longest_ns || delta < a->max_duration)
145 			continue;
146 
147 		a->max_duration = delta;
148 		irq_work_queue(&a->irq_work);
149 	}
150 
151 	rcu_read_unlock();
152 
153 	/* return total number of NMI events handled */
154 	return handled;
155 }
156 NOKPROBE_SYMBOL(nmi_handle);
157 
158 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
159 {
160 	struct nmi_desc *desc = nmi_to_desc(type);
161 	unsigned long flags;
162 
163 	if (!action->handler)
164 		return -EINVAL;
165 
166 	init_irq_work(&action->irq_work, nmi_max_handler);
167 
168 	raw_spin_lock_irqsave(&desc->lock, flags);
169 
170 	/*
171 	 * Indicate if there are multiple registrations on the
172 	 * internal NMI handler call chains (SERR and IO_CHECK).
173 	 */
174 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
175 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
176 
177 	/*
178 	 * some handlers need to be executed first otherwise a fake
179 	 * event confuses some handlers (kdump uses this flag)
180 	 */
181 	if (action->flags & NMI_FLAG_FIRST)
182 		list_add_rcu(&action->list, &desc->head);
183 	else
184 		list_add_tail_rcu(&action->list, &desc->head);
185 
186 	raw_spin_unlock_irqrestore(&desc->lock, flags);
187 	return 0;
188 }
189 EXPORT_SYMBOL(__register_nmi_handler);
190 
191 void unregister_nmi_handler(unsigned int type, const char *name)
192 {
193 	struct nmi_desc *desc = nmi_to_desc(type);
194 	struct nmiaction *n;
195 	unsigned long flags;
196 
197 	raw_spin_lock_irqsave(&desc->lock, flags);
198 
199 	list_for_each_entry_rcu(n, &desc->head, list) {
200 		/*
201 		 * the name passed in to describe the nmi handler
202 		 * is used as the lookup key
203 		 */
204 		if (!strcmp(n->name, name)) {
205 			WARN(in_nmi(),
206 				"Trying to free NMI (%s) from NMI context!\n", n->name);
207 			list_del_rcu(&n->list);
208 			break;
209 		}
210 	}
211 
212 	raw_spin_unlock_irqrestore(&desc->lock, flags);
213 	synchronize_rcu();
214 }
215 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
216 
217 static void
218 pci_serr_error(unsigned char reason, struct pt_regs *regs)
219 {
220 	/* check to see if anyone registered against these types of errors */
221 	if (nmi_handle(NMI_SERR, regs))
222 		return;
223 
224 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
225 		 reason, smp_processor_id());
226 
227 	if (panic_on_unrecovered_nmi)
228 		nmi_panic(regs, "NMI: Not continuing");
229 
230 	pr_emerg("Dazed and confused, but trying to continue\n");
231 
232 	/* Clear and disable the PCI SERR error line. */
233 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
234 	outb(reason, NMI_REASON_PORT);
235 }
236 NOKPROBE_SYMBOL(pci_serr_error);
237 
238 static void
239 io_check_error(unsigned char reason, struct pt_regs *regs)
240 {
241 	unsigned long i;
242 
243 	/* check to see if anyone registered against these types of errors */
244 	if (nmi_handle(NMI_IO_CHECK, regs))
245 		return;
246 
247 	pr_emerg(
248 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
249 		 reason, smp_processor_id());
250 	show_regs(regs);
251 
252 	if (panic_on_io_nmi) {
253 		nmi_panic(regs, "NMI IOCK error: Not continuing");
254 
255 		/*
256 		 * If we end up here, it means we have received an NMI while
257 		 * processing panic(). Simply return without delaying and
258 		 * re-enabling NMIs.
259 		 */
260 		return;
261 	}
262 
263 	/* Re-enable the IOCK line, wait for a few seconds */
264 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
265 	outb(reason, NMI_REASON_PORT);
266 
267 	i = 20000;
268 	while (--i) {
269 		touch_nmi_watchdog();
270 		udelay(100);
271 	}
272 
273 	reason &= ~NMI_REASON_CLEAR_IOCHK;
274 	outb(reason, NMI_REASON_PORT);
275 }
276 NOKPROBE_SYMBOL(io_check_error);
277 
278 static void
279 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
280 {
281 	int handled;
282 
283 	/*
284 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
285 	 * Of course this makes having multiple 'unknown' handlers useless
286 	 * as only the first one is ever run (unless it can actually determine
287 	 * if it caused the NMI)
288 	 */
289 	handled = nmi_handle(NMI_UNKNOWN, regs);
290 	if (handled) {
291 		__this_cpu_add(nmi_stats.unknown, handled);
292 		return;
293 	}
294 
295 	__this_cpu_add(nmi_stats.unknown, 1);
296 
297 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
298 		 reason, smp_processor_id());
299 
300 	pr_emerg("Do you have a strange power saving mode enabled?\n");
301 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
302 		nmi_panic(regs, "NMI: Not continuing");
303 
304 	pr_emerg("Dazed and confused, but trying to continue\n");
305 }
306 NOKPROBE_SYMBOL(unknown_nmi_error);
307 
308 static DEFINE_PER_CPU(bool, swallow_nmi);
309 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
310 
311 static void default_do_nmi(struct pt_regs *regs)
312 {
313 	unsigned char reason = 0;
314 	int handled;
315 	bool b2b = false;
316 
317 	/*
318 	 * CPU-specific NMI must be processed before non-CPU-specific
319 	 * NMI, otherwise we may lose it, because the CPU-specific
320 	 * NMI can not be detected/processed on other CPUs.
321 	 */
322 
323 	/*
324 	 * Back-to-back NMIs are interesting because they can either
325 	 * be two NMI or more than two NMIs (any thing over two is dropped
326 	 * due to NMI being edge-triggered).  If this is the second half
327 	 * of the back-to-back NMI, assume we dropped things and process
328 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
329 	 */
330 	if (regs->ip == __this_cpu_read(last_nmi_rip))
331 		b2b = true;
332 	else
333 		__this_cpu_write(swallow_nmi, false);
334 
335 	__this_cpu_write(last_nmi_rip, regs->ip);
336 
337 	handled = nmi_handle(NMI_LOCAL, regs);
338 	__this_cpu_add(nmi_stats.normal, handled);
339 	if (handled) {
340 		/*
341 		 * There are cases when a NMI handler handles multiple
342 		 * events in the current NMI.  One of these events may
343 		 * be queued for in the next NMI.  Because the event is
344 		 * already handled, the next NMI will result in an unknown
345 		 * NMI.  Instead lets flag this for a potential NMI to
346 		 * swallow.
347 		 */
348 		if (handled > 1)
349 			__this_cpu_write(swallow_nmi, true);
350 		return;
351 	}
352 
353 	/*
354 	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
355 	 *
356 	 * Another CPU may be processing panic routines while holding
357 	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
358 	 * and if so, call its callback directly.  If there is no CPU preparing
359 	 * crash dump, we simply loop here.
360 	 */
361 	while (!raw_spin_trylock(&nmi_reason_lock)) {
362 		run_crash_ipi_callback(regs);
363 		cpu_relax();
364 	}
365 
366 	reason = x86_platform.get_nmi_reason();
367 
368 	if (reason & NMI_REASON_MASK) {
369 		if (reason & NMI_REASON_SERR)
370 			pci_serr_error(reason, regs);
371 		else if (reason & NMI_REASON_IOCHK)
372 			io_check_error(reason, regs);
373 #ifdef CONFIG_X86_32
374 		/*
375 		 * Reassert NMI in case it became active
376 		 * meanwhile as it's edge-triggered:
377 		 */
378 		reassert_nmi();
379 #endif
380 		__this_cpu_add(nmi_stats.external, 1);
381 		raw_spin_unlock(&nmi_reason_lock);
382 		return;
383 	}
384 	raw_spin_unlock(&nmi_reason_lock);
385 
386 	/*
387 	 * Only one NMI can be latched at a time.  To handle
388 	 * this we may process multiple nmi handlers at once to
389 	 * cover the case where an NMI is dropped.  The downside
390 	 * to this approach is we may process an NMI prematurely,
391 	 * while its real NMI is sitting latched.  This will cause
392 	 * an unknown NMI on the next run of the NMI processing.
393 	 *
394 	 * We tried to flag that condition above, by setting the
395 	 * swallow_nmi flag when we process more than one event.
396 	 * This condition is also only present on the second half
397 	 * of a back-to-back NMI, so we flag that condition too.
398 	 *
399 	 * If both are true, we assume we already processed this
400 	 * NMI previously and we swallow it.  Otherwise we reset
401 	 * the logic.
402 	 *
403 	 * There are scenarios where we may accidentally swallow
404 	 * a 'real' unknown NMI.  For example, while processing
405 	 * a perf NMI another perf NMI comes in along with a
406 	 * 'real' unknown NMI.  These two NMIs get combined into
407 	 * one (as descibed above).  When the next NMI gets
408 	 * processed, it will be flagged by perf as handled, but
409 	 * noone will know that there was a 'real' unknown NMI sent
410 	 * also.  As a result it gets swallowed.  Or if the first
411 	 * perf NMI returns two events handled then the second
412 	 * NMI will get eaten by the logic below, again losing a
413 	 * 'real' unknown NMI.  But this is the best we can do
414 	 * for now.
415 	 */
416 	if (b2b && __this_cpu_read(swallow_nmi))
417 		__this_cpu_add(nmi_stats.swallow, 1);
418 	else
419 		unknown_nmi_error(reason, regs);
420 }
421 NOKPROBE_SYMBOL(default_do_nmi);
422 
423 /*
424  * NMIs can page fault or hit breakpoints which will cause it to lose
425  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
426  *
427  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
428  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
429  * if the outer NMI came from kernel mode, but we can still nest if the
430  * outer NMI came from user mode.
431  *
432  * To handle these nested NMIs, we have three states:
433  *
434  *  1) not running
435  *  2) executing
436  *  3) latched
437  *
438  * When no NMI is in progress, it is in the "not running" state.
439  * When an NMI comes in, it goes into the "executing" state.
440  * Normally, if another NMI is triggered, it does not interrupt
441  * the running NMI and the HW will simply latch it so that when
442  * the first NMI finishes, it will restart the second NMI.
443  * (Note, the latch is binary, thus multiple NMIs triggering,
444  *  when one is running, are ignored. Only one NMI is restarted.)
445  *
446  * If an NMI executes an iret, another NMI can preempt it. We do not
447  * want to allow this new NMI to run, but we want to execute it when the
448  * first one finishes.  We set the state to "latched", and the exit of
449  * the first NMI will perform a dec_return, if the result is zero
450  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
451  * dec_return would have set the state to NMI_EXECUTING (what we want it
452  * to be when we are running). In this case, we simply jump back to
453  * rerun the NMI handler again, and restart the 'latched' NMI.
454  *
455  * No trap (breakpoint or page fault) should be hit before nmi_restart,
456  * thus there is no race between the first check of state for NOT_RUNNING
457  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
458  * at this point.
459  *
460  * In case the NMI takes a page fault, we need to save off the CR2
461  * because the NMI could have preempted another page fault and corrupt
462  * the CR2 that is about to be read. As nested NMIs must be restarted
463  * and they can not take breakpoints or page faults, the update of the
464  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
465  * Otherwise, there would be a race of another nested NMI coming in
466  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
467  */
468 enum nmi_states {
469 	NMI_NOT_RUNNING = 0,
470 	NMI_EXECUTING,
471 	NMI_LATCHED,
472 };
473 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
474 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
475 
476 #ifdef CONFIG_X86_64
477 /*
478  * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
479  * some care, the inner breakpoint will clobber the outer breakpoint's
480  * stack.
481  *
482  * If a breakpoint is being processed, and the debug stack is being
483  * used, if an NMI comes in and also hits a breakpoint, the stack
484  * pointer will be set to the same fixed address as the breakpoint that
485  * was interrupted, causing that stack to be corrupted. To handle this
486  * case, check if the stack that was interrupted is the debug stack, and
487  * if so, change the IDT so that new breakpoints will use the current
488  * stack and not switch to the fixed address. On return of the NMI,
489  * switch back to the original IDT.
490  */
491 static DEFINE_PER_CPU(int, update_debug_stack);
492 
493 static bool notrace is_debug_stack(unsigned long addr)
494 {
495 	struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks);
496 	unsigned long top = CEA_ESTACK_TOP(cs, DB);
497 	unsigned long bot = CEA_ESTACK_BOT(cs, DB1);
498 
499 	if (__this_cpu_read(debug_stack_usage))
500 		return true;
501 	/*
502 	 * Note, this covers the guard page between DB and DB1 as well to
503 	 * avoid two checks. But by all means @addr can never point into
504 	 * the guard page.
505 	 */
506 	return addr >= bot && addr < top;
507 }
508 NOKPROBE_SYMBOL(is_debug_stack);
509 #endif
510 
511 dotraplinkage notrace void
512 do_nmi(struct pt_regs *regs, long error_code)
513 {
514 	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
515 		this_cpu_write(nmi_state, NMI_LATCHED);
516 		return;
517 	}
518 	this_cpu_write(nmi_state, NMI_EXECUTING);
519 	this_cpu_write(nmi_cr2, read_cr2());
520 nmi_restart:
521 
522 #ifdef CONFIG_X86_64
523 	/*
524 	 * If we interrupted a breakpoint, it is possible that
525 	 * the nmi handler will have breakpoints too. We need to
526 	 * change the IDT such that breakpoints that happen here
527 	 * continue to use the NMI stack.
528 	 */
529 	if (unlikely(is_debug_stack(regs->sp))) {
530 		debug_stack_set_zero();
531 		this_cpu_write(update_debug_stack, 1);
532 	}
533 #endif
534 
535 	nmi_enter();
536 
537 	inc_irq_stat(__nmi_count);
538 
539 	if (!ignore_nmis)
540 		default_do_nmi(regs);
541 
542 	nmi_exit();
543 
544 #ifdef CONFIG_X86_64
545 	if (unlikely(this_cpu_read(update_debug_stack))) {
546 		debug_stack_reset();
547 		this_cpu_write(update_debug_stack, 0);
548 	}
549 #endif
550 
551 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
552 		write_cr2(this_cpu_read(nmi_cr2));
553 	if (this_cpu_dec_return(nmi_state))
554 		goto nmi_restart;
555 
556 	if (user_mode(regs))
557 		mds_user_clear_cpu_buffers();
558 }
559 NOKPROBE_SYMBOL(do_nmi);
560 
561 void stop_nmi(void)
562 {
563 	ignore_nmis++;
564 }
565 
566 void restart_nmi(void)
567 {
568 	ignore_nmis--;
569 }
570 
571 /* reset the back-to-back NMI logic */
572 void local_touch_nmi(void)
573 {
574 	__this_cpu_write(last_nmi_rip, 0);
575 }
576 EXPORT_SYMBOL_GPL(local_touch_nmi);
577