1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 5 * Copyright (C) 2011 Don Zickus Red Hat, Inc. 6 * 7 * Pentium III FXSR, SSE support 8 * Gareth Hughes <gareth@valinux.com>, May 2000 9 */ 10 11 /* 12 * Handle hardware traps and faults. 13 */ 14 #include <linux/spinlock.h> 15 #include <linux/kprobes.h> 16 #include <linux/kdebug.h> 17 #include <linux/sched/debug.h> 18 #include <linux/nmi.h> 19 #include <linux/debugfs.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/ratelimit.h> 23 #include <linux/slab.h> 24 #include <linux/export.h> 25 #include <linux/atomic.h> 26 #include <linux/sched/clock.h> 27 28 #include <asm/cpu_entry_area.h> 29 #include <asm/traps.h> 30 #include <asm/mach_traps.h> 31 #include <asm/nmi.h> 32 #include <asm/x86_init.h> 33 #include <asm/reboot.h> 34 #include <asm/cache.h> 35 #include <asm/nospec-branch.h> 36 #include <asm/sev.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/nmi.h> 40 41 struct nmi_desc { 42 raw_spinlock_t lock; 43 struct list_head head; 44 }; 45 46 static struct nmi_desc nmi_desc[NMI_MAX] = 47 { 48 { 49 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), 50 .head = LIST_HEAD_INIT(nmi_desc[0].head), 51 }, 52 { 53 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), 54 .head = LIST_HEAD_INIT(nmi_desc[1].head), 55 }, 56 { 57 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), 58 .head = LIST_HEAD_INIT(nmi_desc[2].head), 59 }, 60 { 61 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), 62 .head = LIST_HEAD_INIT(nmi_desc[3].head), 63 }, 64 65 }; 66 67 struct nmi_stats { 68 unsigned int normal; 69 unsigned int unknown; 70 unsigned int external; 71 unsigned int swallow; 72 unsigned long recv_jiffies; 73 unsigned long idt_seq; 74 unsigned long idt_nmi_seq; 75 unsigned long idt_ignored; 76 atomic_long_t idt_calls; 77 unsigned long idt_seq_snap; 78 unsigned long idt_nmi_seq_snap; 79 unsigned long idt_ignored_snap; 80 long idt_calls_snap; 81 }; 82 83 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); 84 85 static int ignore_nmis __read_mostly; 86 87 int unknown_nmi_panic; 88 /* 89 * Prevent NMI reason port (0x61) being accessed simultaneously, can 90 * only be used in NMI handler. 91 */ 92 static DEFINE_RAW_SPINLOCK(nmi_reason_lock); 93 94 static int __init setup_unknown_nmi_panic(char *str) 95 { 96 unknown_nmi_panic = 1; 97 return 1; 98 } 99 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 100 101 #define nmi_to_desc(type) (&nmi_desc[type]) 102 103 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; 104 105 static int __init nmi_warning_debugfs(void) 106 { 107 debugfs_create_u64("nmi_longest_ns", 0644, 108 arch_debugfs_dir, &nmi_longest_ns); 109 return 0; 110 } 111 fs_initcall(nmi_warning_debugfs); 112 113 static void nmi_check_duration(struct nmiaction *action, u64 duration) 114 { 115 int remainder_ns, decimal_msecs; 116 117 if (duration < nmi_longest_ns || duration < action->max_duration) 118 return; 119 120 action->max_duration = duration; 121 122 remainder_ns = do_div(duration, (1000 * 1000)); 123 decimal_msecs = remainder_ns / 1000; 124 125 printk_ratelimited(KERN_INFO 126 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", 127 action->handler, duration, decimal_msecs); 128 } 129 130 static int nmi_handle(unsigned int type, struct pt_regs *regs) 131 { 132 struct nmi_desc *desc = nmi_to_desc(type); 133 struct nmiaction *a; 134 int handled=0; 135 136 rcu_read_lock(); 137 138 /* 139 * NMIs are edge-triggered, which means if you have enough 140 * of them concurrently, you can lose some because only one 141 * can be latched at any given time. Walk the whole list 142 * to handle those situations. 143 */ 144 list_for_each_entry_rcu(a, &desc->head, list) { 145 int thishandled; 146 u64 delta; 147 148 delta = sched_clock(); 149 thishandled = a->handler(type, regs); 150 handled += thishandled; 151 delta = sched_clock() - delta; 152 trace_nmi_handler(a->handler, (int)delta, thishandled); 153 154 nmi_check_duration(a, delta); 155 } 156 157 rcu_read_unlock(); 158 159 /* return total number of NMI events handled */ 160 return handled; 161 } 162 NOKPROBE_SYMBOL(nmi_handle); 163 164 int __register_nmi_handler(unsigned int type, struct nmiaction *action) 165 { 166 struct nmi_desc *desc = nmi_to_desc(type); 167 unsigned long flags; 168 169 if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list))) 170 return -EINVAL; 171 172 raw_spin_lock_irqsave(&desc->lock, flags); 173 174 /* 175 * Indicate if there are multiple registrations on the 176 * internal NMI handler call chains (SERR and IO_CHECK). 177 */ 178 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); 179 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); 180 181 /* 182 * some handlers need to be executed first otherwise a fake 183 * event confuses some handlers (kdump uses this flag) 184 */ 185 if (action->flags & NMI_FLAG_FIRST) 186 list_add_rcu(&action->list, &desc->head); 187 else 188 list_add_tail_rcu(&action->list, &desc->head); 189 190 raw_spin_unlock_irqrestore(&desc->lock, flags); 191 return 0; 192 } 193 EXPORT_SYMBOL(__register_nmi_handler); 194 195 void unregister_nmi_handler(unsigned int type, const char *name) 196 { 197 struct nmi_desc *desc = nmi_to_desc(type); 198 struct nmiaction *n, *found = NULL; 199 unsigned long flags; 200 201 raw_spin_lock_irqsave(&desc->lock, flags); 202 203 list_for_each_entry_rcu(n, &desc->head, list) { 204 /* 205 * the name passed in to describe the nmi handler 206 * is used as the lookup key 207 */ 208 if (!strcmp(n->name, name)) { 209 WARN(in_nmi(), 210 "Trying to free NMI (%s) from NMI context!\n", n->name); 211 list_del_rcu(&n->list); 212 found = n; 213 break; 214 } 215 } 216 217 raw_spin_unlock_irqrestore(&desc->lock, flags); 218 if (found) { 219 synchronize_rcu(); 220 INIT_LIST_HEAD(&found->list); 221 } 222 } 223 EXPORT_SYMBOL_GPL(unregister_nmi_handler); 224 225 static void 226 pci_serr_error(unsigned char reason, struct pt_regs *regs) 227 { 228 /* check to see if anyone registered against these types of errors */ 229 if (nmi_handle(NMI_SERR, regs)) 230 return; 231 232 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", 233 reason, smp_processor_id()); 234 235 if (panic_on_unrecovered_nmi) 236 nmi_panic(regs, "NMI: Not continuing"); 237 238 pr_emerg("Dazed and confused, but trying to continue\n"); 239 240 /* Clear and disable the PCI SERR error line. */ 241 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; 242 outb(reason, NMI_REASON_PORT); 243 } 244 NOKPROBE_SYMBOL(pci_serr_error); 245 246 static void 247 io_check_error(unsigned char reason, struct pt_regs *regs) 248 { 249 unsigned long i; 250 251 /* check to see if anyone registered against these types of errors */ 252 if (nmi_handle(NMI_IO_CHECK, regs)) 253 return; 254 255 pr_emerg( 256 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", 257 reason, smp_processor_id()); 258 show_regs(regs); 259 260 if (panic_on_io_nmi) { 261 nmi_panic(regs, "NMI IOCK error: Not continuing"); 262 263 /* 264 * If we end up here, it means we have received an NMI while 265 * processing panic(). Simply return without delaying and 266 * re-enabling NMIs. 267 */ 268 return; 269 } 270 271 /* Re-enable the IOCK line, wait for a few seconds */ 272 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; 273 outb(reason, NMI_REASON_PORT); 274 275 i = 20000; 276 while (--i) { 277 touch_nmi_watchdog(); 278 udelay(100); 279 } 280 281 reason &= ~NMI_REASON_CLEAR_IOCHK; 282 outb(reason, NMI_REASON_PORT); 283 } 284 NOKPROBE_SYMBOL(io_check_error); 285 286 static void 287 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 288 { 289 int handled; 290 291 /* 292 * Use 'false' as back-to-back NMIs are dealt with one level up. 293 * Of course this makes having multiple 'unknown' handlers useless 294 * as only the first one is ever run (unless it can actually determine 295 * if it caused the NMI) 296 */ 297 handled = nmi_handle(NMI_UNKNOWN, regs); 298 if (handled) { 299 __this_cpu_add(nmi_stats.unknown, handled); 300 return; 301 } 302 303 __this_cpu_add(nmi_stats.unknown, 1); 304 305 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 306 reason, smp_processor_id()); 307 308 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 309 nmi_panic(regs, "NMI: Not continuing"); 310 311 pr_emerg("Dazed and confused, but trying to continue\n"); 312 } 313 NOKPROBE_SYMBOL(unknown_nmi_error); 314 315 static DEFINE_PER_CPU(bool, swallow_nmi); 316 static DEFINE_PER_CPU(unsigned long, last_nmi_rip); 317 318 static noinstr void default_do_nmi(struct pt_regs *regs) 319 { 320 unsigned char reason = 0; 321 int handled; 322 bool b2b = false; 323 324 /* 325 * CPU-specific NMI must be processed before non-CPU-specific 326 * NMI, otherwise we may lose it, because the CPU-specific 327 * NMI can not be detected/processed on other CPUs. 328 */ 329 330 /* 331 * Back-to-back NMIs are interesting because they can either 332 * be two NMI or more than two NMIs (any thing over two is dropped 333 * due to NMI being edge-triggered). If this is the second half 334 * of the back-to-back NMI, assume we dropped things and process 335 * more handlers. Otherwise reset the 'swallow' NMI behaviour 336 */ 337 if (regs->ip == __this_cpu_read(last_nmi_rip)) 338 b2b = true; 339 else 340 __this_cpu_write(swallow_nmi, false); 341 342 __this_cpu_write(last_nmi_rip, regs->ip); 343 344 instrumentation_begin(); 345 346 handled = nmi_handle(NMI_LOCAL, regs); 347 __this_cpu_add(nmi_stats.normal, handled); 348 if (handled) { 349 /* 350 * There are cases when a NMI handler handles multiple 351 * events in the current NMI. One of these events may 352 * be queued for in the next NMI. Because the event is 353 * already handled, the next NMI will result in an unknown 354 * NMI. Instead lets flag this for a potential NMI to 355 * swallow. 356 */ 357 if (handled > 1) 358 __this_cpu_write(swallow_nmi, true); 359 goto out; 360 } 361 362 /* 363 * Non-CPU-specific NMI: NMI sources can be processed on any CPU. 364 * 365 * Another CPU may be processing panic routines while holding 366 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, 367 * and if so, call its callback directly. If there is no CPU preparing 368 * crash dump, we simply loop here. 369 */ 370 while (!raw_spin_trylock(&nmi_reason_lock)) { 371 run_crash_ipi_callback(regs); 372 cpu_relax(); 373 } 374 375 reason = x86_platform.get_nmi_reason(); 376 377 if (reason & NMI_REASON_MASK) { 378 if (reason & NMI_REASON_SERR) 379 pci_serr_error(reason, regs); 380 else if (reason & NMI_REASON_IOCHK) 381 io_check_error(reason, regs); 382 #ifdef CONFIG_X86_32 383 /* 384 * Reassert NMI in case it became active 385 * meanwhile as it's edge-triggered: 386 */ 387 reassert_nmi(); 388 #endif 389 __this_cpu_add(nmi_stats.external, 1); 390 raw_spin_unlock(&nmi_reason_lock); 391 goto out; 392 } 393 raw_spin_unlock(&nmi_reason_lock); 394 395 /* 396 * Only one NMI can be latched at a time. To handle 397 * this we may process multiple nmi handlers at once to 398 * cover the case where an NMI is dropped. The downside 399 * to this approach is we may process an NMI prematurely, 400 * while its real NMI is sitting latched. This will cause 401 * an unknown NMI on the next run of the NMI processing. 402 * 403 * We tried to flag that condition above, by setting the 404 * swallow_nmi flag when we process more than one event. 405 * This condition is also only present on the second half 406 * of a back-to-back NMI, so we flag that condition too. 407 * 408 * If both are true, we assume we already processed this 409 * NMI previously and we swallow it. Otherwise we reset 410 * the logic. 411 * 412 * There are scenarios where we may accidentally swallow 413 * a 'real' unknown NMI. For example, while processing 414 * a perf NMI another perf NMI comes in along with a 415 * 'real' unknown NMI. These two NMIs get combined into 416 * one (as described above). When the next NMI gets 417 * processed, it will be flagged by perf as handled, but 418 * no one will know that there was a 'real' unknown NMI sent 419 * also. As a result it gets swallowed. Or if the first 420 * perf NMI returns two events handled then the second 421 * NMI will get eaten by the logic below, again losing a 422 * 'real' unknown NMI. But this is the best we can do 423 * for now. 424 */ 425 if (b2b && __this_cpu_read(swallow_nmi)) 426 __this_cpu_add(nmi_stats.swallow, 1); 427 else 428 unknown_nmi_error(reason, regs); 429 430 out: 431 instrumentation_end(); 432 } 433 434 /* 435 * NMIs can page fault or hit breakpoints which will cause it to lose 436 * its NMI context with the CPU when the breakpoint or page fault does an IRET. 437 * 438 * As a result, NMIs can nest if NMIs get unmasked due an IRET during 439 * NMI processing. On x86_64, the asm glue protects us from nested NMIs 440 * if the outer NMI came from kernel mode, but we can still nest if the 441 * outer NMI came from user mode. 442 * 443 * To handle these nested NMIs, we have three states: 444 * 445 * 1) not running 446 * 2) executing 447 * 3) latched 448 * 449 * When no NMI is in progress, it is in the "not running" state. 450 * When an NMI comes in, it goes into the "executing" state. 451 * Normally, if another NMI is triggered, it does not interrupt 452 * the running NMI and the HW will simply latch it so that when 453 * the first NMI finishes, it will restart the second NMI. 454 * (Note, the latch is binary, thus multiple NMIs triggering, 455 * when one is running, are ignored. Only one NMI is restarted.) 456 * 457 * If an NMI executes an iret, another NMI can preempt it. We do not 458 * want to allow this new NMI to run, but we want to execute it when the 459 * first one finishes. We set the state to "latched", and the exit of 460 * the first NMI will perform a dec_return, if the result is zero 461 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the 462 * dec_return would have set the state to NMI_EXECUTING (what we want it 463 * to be when we are running). In this case, we simply jump back to 464 * rerun the NMI handler again, and restart the 'latched' NMI. 465 * 466 * No trap (breakpoint or page fault) should be hit before nmi_restart, 467 * thus there is no race between the first check of state for NOT_RUNNING 468 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs 469 * at this point. 470 * 471 * In case the NMI takes a page fault, we need to save off the CR2 472 * because the NMI could have preempted another page fault and corrupt 473 * the CR2 that is about to be read. As nested NMIs must be restarted 474 * and they can not take breakpoints or page faults, the update of the 475 * CR2 must be done before converting the nmi state back to NOT_RUNNING. 476 * Otherwise, there would be a race of another nested NMI coming in 477 * after setting state to NOT_RUNNING but before updating the nmi_cr2. 478 */ 479 enum nmi_states { 480 NMI_NOT_RUNNING = 0, 481 NMI_EXECUTING, 482 NMI_LATCHED, 483 }; 484 static DEFINE_PER_CPU(enum nmi_states, nmi_state); 485 static DEFINE_PER_CPU(unsigned long, nmi_cr2); 486 static DEFINE_PER_CPU(unsigned long, nmi_dr7); 487 488 DEFINE_IDTENTRY_RAW(exc_nmi) 489 { 490 irqentry_state_t irq_state; 491 struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats); 492 493 /* 494 * Re-enable NMIs right here when running as an SEV-ES guest. This might 495 * cause nested NMIs, but those can be handled safely. 496 */ 497 sev_es_nmi_complete(); 498 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) 499 arch_atomic_long_inc(&nsp->idt_calls); 500 501 if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id())) 502 return; 503 504 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { 505 this_cpu_write(nmi_state, NMI_LATCHED); 506 return; 507 } 508 this_cpu_write(nmi_state, NMI_EXECUTING); 509 this_cpu_write(nmi_cr2, read_cr2()); 510 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { 511 WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1); 512 WARN_ON_ONCE(!(nsp->idt_seq & 0x1)); 513 WRITE_ONCE(nsp->recv_jiffies, jiffies); 514 } 515 nmi_restart: 516 517 /* 518 * Needs to happen before DR7 is accessed, because the hypervisor can 519 * intercept DR7 reads/writes, turning those into #VC exceptions. 520 */ 521 sev_es_ist_enter(regs); 522 523 this_cpu_write(nmi_dr7, local_db_save()); 524 525 irq_state = irqentry_nmi_enter(regs); 526 527 inc_irq_stat(__nmi_count); 528 529 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) { 530 WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1); 531 } else if (!ignore_nmis) { 532 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { 533 WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1); 534 WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1)); 535 } 536 default_do_nmi(regs); 537 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { 538 WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1); 539 WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1); 540 } 541 } 542 543 irqentry_nmi_exit(regs, irq_state); 544 545 local_db_restore(this_cpu_read(nmi_dr7)); 546 547 sev_es_ist_exit(); 548 549 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) 550 write_cr2(this_cpu_read(nmi_cr2)); 551 if (this_cpu_dec_return(nmi_state)) 552 goto nmi_restart; 553 554 if (user_mode(regs)) 555 mds_user_clear_cpu_buffers(); 556 if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) { 557 WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1); 558 WARN_ON_ONCE(nsp->idt_seq & 0x1); 559 WRITE_ONCE(nsp->recv_jiffies, jiffies); 560 } 561 } 562 563 #if IS_ENABLED(CONFIG_KVM_INTEL) 564 DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx) 565 { 566 exc_nmi(regs); 567 } 568 #if IS_MODULE(CONFIG_KVM_INTEL) 569 EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx); 570 #endif 571 #endif 572 573 #ifdef CONFIG_NMI_CHECK_CPU 574 575 static char *nmi_check_stall_msg[] = { 576 /* */ 577 /* +--------- nsp->idt_seq_snap & 0x1: CPU is in NMI handler. */ 578 /* | +------ cpu_is_offline(cpu) */ 579 /* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls): */ 580 /* | | | NMI handler has been invoked. */ 581 /* | | | */ 582 /* V V V */ 583 /* 0 0 0 */ "NMIs are not reaching exc_nmi() handler", 584 /* 0 0 1 */ "exc_nmi() handler is ignoring NMIs", 585 /* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler", 586 /* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs", 587 /* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler", 588 /* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs", 589 /* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler", 590 /* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs", 591 }; 592 593 void nmi_backtrace_stall_snap(const struct cpumask *btp) 594 { 595 int cpu; 596 struct nmi_stats *nsp; 597 598 for_each_cpu(cpu, btp) { 599 nsp = per_cpu_ptr(&nmi_stats, cpu); 600 nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq); 601 nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq); 602 nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored); 603 nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls); 604 } 605 } 606 607 void nmi_backtrace_stall_check(const struct cpumask *btp) 608 { 609 int cpu; 610 int idx; 611 unsigned long nmi_seq; 612 unsigned long j = jiffies; 613 char *modp; 614 char *msgp; 615 char *msghp; 616 struct nmi_stats *nsp; 617 618 for_each_cpu(cpu, btp) { 619 nsp = per_cpu_ptr(&nmi_stats, cpu); 620 modp = ""; 621 msghp = ""; 622 nmi_seq = READ_ONCE(nsp->idt_nmi_seq); 623 if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) { 624 msgp = "CPU entered NMI handler function, but has not exited"; 625 } else if ((nsp->idt_nmi_seq_snap & 0x1) != (nmi_seq & 0x1)) { 626 msgp = "CPU is handling NMIs"; 627 } else { 628 idx = ((nsp->idt_seq_snap & 0x1) << 2) | 629 (cpu_is_offline(cpu) << 1) | 630 (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls)); 631 msgp = nmi_check_stall_msg[idx]; 632 if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1)) 633 modp = ", but OK because ignore_nmis was set"; 634 if (nmi_seq & ~0x1) 635 msghp = " (CPU currently in NMI handler function)"; 636 else if (nsp->idt_nmi_seq_snap + 1 == nmi_seq) 637 msghp = " (CPU exited one NMI handler function)"; 638 } 639 pr_alert("%s: CPU %d: %s%s%s, last activity: %lu jiffies ago.\n", 640 __func__, cpu, msgp, modp, msghp, j - READ_ONCE(nsp->recv_jiffies)); 641 } 642 } 643 644 #endif 645 646 void stop_nmi(void) 647 { 648 ignore_nmis++; 649 } 650 651 void restart_nmi(void) 652 { 653 ignore_nmis--; 654 } 655 656 /* reset the back-to-back NMI logic */ 657 void local_touch_nmi(void) 658 { 659 __this_cpu_write(last_nmi_rip, 0); 660 } 661 EXPORT_SYMBOL_GPL(local_touch_nmi); 662