xref: /openbmc/linux/arch/x86/kernel/machine_kexec_64.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt)	"kexec: " fmt
10 
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
21 
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30 #include <asm/set_memory.h>
31 
32 #ifdef CONFIG_KEXEC_FILE
33 const struct kexec_file_ops * const kexec_file_loaders[] = {
34 		&kexec_bzImage64_ops,
35 		NULL
36 };
37 #endif
38 
39 static void free_transition_pgtable(struct kimage *image)
40 {
41 	free_page((unsigned long)image->arch.p4d);
42 	free_page((unsigned long)image->arch.pud);
43 	free_page((unsigned long)image->arch.pmd);
44 	free_page((unsigned long)image->arch.pte);
45 }
46 
47 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
48 {
49 	p4d_t *p4d;
50 	pud_t *pud;
51 	pmd_t *pmd;
52 	pte_t *pte;
53 	unsigned long vaddr, paddr;
54 	int result = -ENOMEM;
55 
56 	vaddr = (unsigned long)relocate_kernel;
57 	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
58 	pgd += pgd_index(vaddr);
59 	if (!pgd_present(*pgd)) {
60 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
61 		if (!p4d)
62 			goto err;
63 		image->arch.p4d = p4d;
64 		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
65 	}
66 	p4d = p4d_offset(pgd, vaddr);
67 	if (!p4d_present(*p4d)) {
68 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
69 		if (!pud)
70 			goto err;
71 		image->arch.pud = pud;
72 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
73 	}
74 	pud = pud_offset(p4d, vaddr);
75 	if (!pud_present(*pud)) {
76 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
77 		if (!pmd)
78 			goto err;
79 		image->arch.pmd = pmd;
80 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
81 	}
82 	pmd = pmd_offset(pud, vaddr);
83 	if (!pmd_present(*pmd)) {
84 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
85 		if (!pte)
86 			goto err;
87 		image->arch.pte = pte;
88 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
89 	}
90 	pte = pte_offset_kernel(pmd, vaddr);
91 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
92 	return 0;
93 err:
94 	free_transition_pgtable(image);
95 	return result;
96 }
97 
98 static void *alloc_pgt_page(void *data)
99 {
100 	struct kimage *image = (struct kimage *)data;
101 	struct page *page;
102 	void *p = NULL;
103 
104 	page = kimage_alloc_control_pages(image, 0);
105 	if (page) {
106 		p = page_address(page);
107 		clear_page(p);
108 	}
109 
110 	return p;
111 }
112 
113 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
114 {
115 	struct x86_mapping_info info = {
116 		.alloc_pgt_page	= alloc_pgt_page,
117 		.context	= image,
118 		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
119 		.kernpg_flag	= _KERNPG_TABLE_NOENC,
120 	};
121 	unsigned long mstart, mend;
122 	pgd_t *level4p;
123 	int result;
124 	int i;
125 
126 	level4p = (pgd_t *)__va(start_pgtable);
127 	clear_page(level4p);
128 
129 	if (direct_gbpages)
130 		info.direct_gbpages = true;
131 
132 	for (i = 0; i < nr_pfn_mapped; i++) {
133 		mstart = pfn_mapped[i].start << PAGE_SHIFT;
134 		mend   = pfn_mapped[i].end << PAGE_SHIFT;
135 
136 		result = kernel_ident_mapping_init(&info,
137 						 level4p, mstart, mend);
138 		if (result)
139 			return result;
140 	}
141 
142 	/*
143 	 * segments's mem ranges could be outside 0 ~ max_pfn,
144 	 * for example when jump back to original kernel from kexeced kernel.
145 	 * or first kernel is booted with user mem map, and second kernel
146 	 * could be loaded out of that range.
147 	 */
148 	for (i = 0; i < image->nr_segments; i++) {
149 		mstart = image->segment[i].mem;
150 		mend   = mstart + image->segment[i].memsz;
151 
152 		result = kernel_ident_mapping_init(&info,
153 						 level4p, mstart, mend);
154 
155 		if (result)
156 			return result;
157 	}
158 
159 	return init_transition_pgtable(image, level4p);
160 }
161 
162 static void set_idt(void *newidt, u16 limit)
163 {
164 	struct desc_ptr curidt;
165 
166 	/* x86-64 supports unaliged loads & stores */
167 	curidt.size    = limit;
168 	curidt.address = (unsigned long)newidt;
169 
170 	__asm__ __volatile__ (
171 		"lidtq %0\n"
172 		: : "m" (curidt)
173 		);
174 };
175 
176 
177 static void set_gdt(void *newgdt, u16 limit)
178 {
179 	struct desc_ptr curgdt;
180 
181 	/* x86-64 supports unaligned loads & stores */
182 	curgdt.size    = limit;
183 	curgdt.address = (unsigned long)newgdt;
184 
185 	__asm__ __volatile__ (
186 		"lgdtq %0\n"
187 		: : "m" (curgdt)
188 		);
189 };
190 
191 static void load_segments(void)
192 {
193 	__asm__ __volatile__ (
194 		"\tmovl %0,%%ds\n"
195 		"\tmovl %0,%%es\n"
196 		"\tmovl %0,%%ss\n"
197 		"\tmovl %0,%%fs\n"
198 		"\tmovl %0,%%gs\n"
199 		: : "a" (__KERNEL_DS) : "memory"
200 		);
201 }
202 
203 #ifdef CONFIG_KEXEC_FILE
204 /* Update purgatory as needed after various image segments have been prepared */
205 static int arch_update_purgatory(struct kimage *image)
206 {
207 	int ret = 0;
208 
209 	if (!image->file_mode)
210 		return 0;
211 
212 	/* Setup copying of backup region */
213 	if (image->type == KEXEC_TYPE_CRASH) {
214 		ret = kexec_purgatory_get_set_symbol(image,
215 				"purgatory_backup_dest",
216 				&image->arch.backup_load_addr,
217 				sizeof(image->arch.backup_load_addr), 0);
218 		if (ret)
219 			return ret;
220 
221 		ret = kexec_purgatory_get_set_symbol(image,
222 				"purgatory_backup_src",
223 				&image->arch.backup_src_start,
224 				sizeof(image->arch.backup_src_start), 0);
225 		if (ret)
226 			return ret;
227 
228 		ret = kexec_purgatory_get_set_symbol(image,
229 				"purgatory_backup_sz",
230 				&image->arch.backup_src_sz,
231 				sizeof(image->arch.backup_src_sz), 0);
232 		if (ret)
233 			return ret;
234 	}
235 
236 	return ret;
237 }
238 #else /* !CONFIG_KEXEC_FILE */
239 static inline int arch_update_purgatory(struct kimage *image)
240 {
241 	return 0;
242 }
243 #endif /* CONFIG_KEXEC_FILE */
244 
245 int machine_kexec_prepare(struct kimage *image)
246 {
247 	unsigned long start_pgtable;
248 	int result;
249 
250 	/* Calculate the offsets */
251 	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
252 
253 	/* Setup the identity mapped 64bit page table */
254 	result = init_pgtable(image, start_pgtable);
255 	if (result)
256 		return result;
257 
258 	/* update purgatory as needed */
259 	result = arch_update_purgatory(image);
260 	if (result)
261 		return result;
262 
263 	return 0;
264 }
265 
266 void machine_kexec_cleanup(struct kimage *image)
267 {
268 	free_transition_pgtable(image);
269 }
270 
271 /*
272  * Do not allocate memory (or fail in any way) in machine_kexec().
273  * We are past the point of no return, committed to rebooting now.
274  */
275 void machine_kexec(struct kimage *image)
276 {
277 	unsigned long page_list[PAGES_NR];
278 	void *control_page;
279 	int save_ftrace_enabled;
280 
281 #ifdef CONFIG_KEXEC_JUMP
282 	if (image->preserve_context)
283 		save_processor_state();
284 #endif
285 
286 	save_ftrace_enabled = __ftrace_enabled_save();
287 
288 	/* Interrupts aren't acceptable while we reboot */
289 	local_irq_disable();
290 	hw_breakpoint_disable();
291 
292 	if (image->preserve_context) {
293 #ifdef CONFIG_X86_IO_APIC
294 		/*
295 		 * We need to put APICs in legacy mode so that we can
296 		 * get timer interrupts in second kernel. kexec/kdump
297 		 * paths already have calls to restore_boot_irq_mode()
298 		 * in one form or other. kexec jump path also need one.
299 		 */
300 		clear_IO_APIC();
301 		restore_boot_irq_mode();
302 #endif
303 	}
304 
305 	control_page = page_address(image->control_code_page) + PAGE_SIZE;
306 	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
307 
308 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
309 	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
310 	page_list[PA_TABLE_PAGE] =
311 	  (unsigned long)__pa(page_address(image->control_code_page));
312 
313 	if (image->type == KEXEC_TYPE_DEFAULT)
314 		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
315 						<< PAGE_SHIFT);
316 
317 	/*
318 	 * The segment registers are funny things, they have both a
319 	 * visible and an invisible part.  Whenever the visible part is
320 	 * set to a specific selector, the invisible part is loaded
321 	 * with from a table in memory.  At no other time is the
322 	 * descriptor table in memory accessed.
323 	 *
324 	 * I take advantage of this here by force loading the
325 	 * segments, before I zap the gdt with an invalid value.
326 	 */
327 	load_segments();
328 	/*
329 	 * The gdt & idt are now invalid.
330 	 * If you want to load them you must set up your own idt & gdt.
331 	 */
332 	set_gdt(phys_to_virt(0), 0);
333 	set_idt(phys_to_virt(0), 0);
334 
335 	/* now call it */
336 	image->start = relocate_kernel((unsigned long)image->head,
337 				       (unsigned long)page_list,
338 				       image->start,
339 				       image->preserve_context,
340 				       sme_active());
341 
342 #ifdef CONFIG_KEXEC_JUMP
343 	if (image->preserve_context)
344 		restore_processor_state();
345 #endif
346 
347 	__ftrace_enabled_restore(save_ftrace_enabled);
348 }
349 
350 void arch_crash_save_vmcoreinfo(void)
351 {
352 	VMCOREINFO_NUMBER(phys_base);
353 	VMCOREINFO_SYMBOL(init_top_pgt);
354 	VMCOREINFO_NUMBER(pgtable_l5_enabled);
355 
356 #ifdef CONFIG_NUMA
357 	VMCOREINFO_SYMBOL(node_data);
358 	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
359 #endif
360 	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
361 			      kaslr_offset());
362 	VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
363 }
364 
365 /* arch-dependent functionality related to kexec file-based syscall */
366 
367 #ifdef CONFIG_KEXEC_FILE
368 void *arch_kexec_kernel_image_load(struct kimage *image)
369 {
370 	vfree(image->arch.elf_headers);
371 	image->arch.elf_headers = NULL;
372 
373 	if (!image->fops || !image->fops->load)
374 		return ERR_PTR(-ENOEXEC);
375 
376 	return image->fops->load(image, image->kernel_buf,
377 				 image->kernel_buf_len, image->initrd_buf,
378 				 image->initrd_buf_len, image->cmdline_buf,
379 				 image->cmdline_buf_len);
380 }
381 
382 /*
383  * Apply purgatory relocations.
384  *
385  * @pi:		Purgatory to be relocated.
386  * @section:	Section relocations applying to.
387  * @relsec:	Section containing RELAs.
388  * @symtabsec:	Corresponding symtab.
389  *
390  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
391  */
392 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
393 				     Elf_Shdr *section, const Elf_Shdr *relsec,
394 				     const Elf_Shdr *symtabsec)
395 {
396 	unsigned int i;
397 	Elf64_Rela *rel;
398 	Elf64_Sym *sym;
399 	void *location;
400 	unsigned long address, sec_base, value;
401 	const char *strtab, *name, *shstrtab;
402 	const Elf_Shdr *sechdrs;
403 
404 	/* String & section header string table */
405 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
406 	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
407 	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
408 
409 	rel = (void *)pi->ehdr + relsec->sh_offset;
410 
411 	pr_debug("Applying relocate section %s to %u\n",
412 		 shstrtab + relsec->sh_name, relsec->sh_info);
413 
414 	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
415 
416 		/*
417 		 * rel[i].r_offset contains byte offset from beginning
418 		 * of section to the storage unit affected.
419 		 *
420 		 * This is location to update. This is temporary buffer
421 		 * where section is currently loaded. This will finally be
422 		 * loaded to a different address later, pointed to by
423 		 * ->sh_addr. kexec takes care of moving it
424 		 *  (kexec_load_segment()).
425 		 */
426 		location = pi->purgatory_buf;
427 		location += section->sh_offset;
428 		location += rel[i].r_offset;
429 
430 		/* Final address of the location */
431 		address = section->sh_addr + rel[i].r_offset;
432 
433 		/*
434 		 * rel[i].r_info contains information about symbol table index
435 		 * w.r.t which relocation must be made and type of relocation
436 		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
437 		 * these respectively.
438 		 */
439 		sym = (void *)pi->ehdr + symtabsec->sh_offset;
440 		sym += ELF64_R_SYM(rel[i].r_info);
441 
442 		if (sym->st_name)
443 			name = strtab + sym->st_name;
444 		else
445 			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
446 
447 		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
448 			 name, sym->st_info, sym->st_shndx, sym->st_value,
449 			 sym->st_size);
450 
451 		if (sym->st_shndx == SHN_UNDEF) {
452 			pr_err("Undefined symbol: %s\n", name);
453 			return -ENOEXEC;
454 		}
455 
456 		if (sym->st_shndx == SHN_COMMON) {
457 			pr_err("symbol '%s' in common section\n", name);
458 			return -ENOEXEC;
459 		}
460 
461 		if (sym->st_shndx == SHN_ABS)
462 			sec_base = 0;
463 		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
464 			pr_err("Invalid section %d for symbol %s\n",
465 			       sym->st_shndx, name);
466 			return -ENOEXEC;
467 		} else
468 			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
469 
470 		value = sym->st_value;
471 		value += sec_base;
472 		value += rel[i].r_addend;
473 
474 		switch (ELF64_R_TYPE(rel[i].r_info)) {
475 		case R_X86_64_NONE:
476 			break;
477 		case R_X86_64_64:
478 			*(u64 *)location = value;
479 			break;
480 		case R_X86_64_32:
481 			*(u32 *)location = value;
482 			if (value != *(u32 *)location)
483 				goto overflow;
484 			break;
485 		case R_X86_64_32S:
486 			*(s32 *)location = value;
487 			if ((s64)value != *(s32 *)location)
488 				goto overflow;
489 			break;
490 		case R_X86_64_PC32:
491 		case R_X86_64_PLT32:
492 			value -= (u64)address;
493 			*(u32 *)location = value;
494 			break;
495 		default:
496 			pr_err("Unknown rela relocation: %llu\n",
497 			       ELF64_R_TYPE(rel[i].r_info));
498 			return -ENOEXEC;
499 		}
500 	}
501 	return 0;
502 
503 overflow:
504 	pr_err("Overflow in relocation type %d value 0x%lx\n",
505 	       (int)ELF64_R_TYPE(rel[i].r_info), value);
506 	return -ENOEXEC;
507 }
508 #endif /* CONFIG_KEXEC_FILE */
509 
510 static int
511 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
512 {
513 	struct page *page;
514 	unsigned int nr_pages;
515 
516 	/*
517 	 * For physical range: [start, end]. We must skip the unassigned
518 	 * crashk resource with zero-valued "end" member.
519 	 */
520 	if (!end || start > end)
521 		return 0;
522 
523 	page = pfn_to_page(start >> PAGE_SHIFT);
524 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
525 	if (protect)
526 		return set_pages_ro(page, nr_pages);
527 	else
528 		return set_pages_rw(page, nr_pages);
529 }
530 
531 static void kexec_mark_crashkres(bool protect)
532 {
533 	unsigned long control;
534 
535 	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
536 
537 	/* Don't touch the control code page used in crash_kexec().*/
538 	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
539 	/* Control code page is located in the 2nd page. */
540 	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
541 	control += KEXEC_CONTROL_PAGE_SIZE;
542 	kexec_mark_range(control, crashk_res.end, protect);
543 }
544 
545 void arch_kexec_protect_crashkres(void)
546 {
547 	kexec_mark_crashkres(true);
548 }
549 
550 void arch_kexec_unprotect_crashkres(void)
551 {
552 	kexec_mark_crashkres(false);
553 }
554 
555 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
556 {
557 	/*
558 	 * If SME is active we need to be sure that kexec pages are
559 	 * not encrypted because when we boot to the new kernel the
560 	 * pages won't be accessed encrypted (initially).
561 	 */
562 	return set_memory_decrypted((unsigned long)vaddr, pages);
563 }
564 
565 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
566 {
567 	/*
568 	 * If SME is active we need to reset the pages back to being
569 	 * an encrypted mapping before freeing them.
570 	 */
571 	set_memory_encrypted((unsigned long)vaddr, pages);
572 }
573