1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 #include <linux/vmalloc.h> 21 22 #include <asm/init.h> 23 #include <asm/pgtable.h> 24 #include <asm/tlbflush.h> 25 #include <asm/mmu_context.h> 26 #include <asm/io_apic.h> 27 #include <asm/debugreg.h> 28 #include <asm/kexec-bzimage64.h> 29 #include <asm/setup.h> 30 #include <asm/set_memory.h> 31 32 #ifdef CONFIG_KEXEC_FILE 33 static struct kexec_file_ops *kexec_file_loaders[] = { 34 &kexec_bzImage64_ops, 35 }; 36 #endif 37 38 static void free_transition_pgtable(struct kimage *image) 39 { 40 free_page((unsigned long)image->arch.p4d); 41 free_page((unsigned long)image->arch.pud); 42 free_page((unsigned long)image->arch.pmd); 43 free_page((unsigned long)image->arch.pte); 44 } 45 46 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 47 { 48 p4d_t *p4d; 49 pud_t *pud; 50 pmd_t *pmd; 51 pte_t *pte; 52 unsigned long vaddr, paddr; 53 int result = -ENOMEM; 54 55 vaddr = (unsigned long)relocate_kernel; 56 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 57 pgd += pgd_index(vaddr); 58 if (!pgd_present(*pgd)) { 59 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 60 if (!p4d) 61 goto err; 62 image->arch.p4d = p4d; 63 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 64 } 65 p4d = p4d_offset(pgd, vaddr); 66 if (!p4d_present(*p4d)) { 67 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 68 if (!pud) 69 goto err; 70 image->arch.pud = pud; 71 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 72 } 73 pud = pud_offset(p4d, vaddr); 74 if (!pud_present(*pud)) { 75 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 76 if (!pmd) 77 goto err; 78 image->arch.pmd = pmd; 79 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 80 } 81 pmd = pmd_offset(pud, vaddr); 82 if (!pmd_present(*pmd)) { 83 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 84 if (!pte) 85 goto err; 86 image->arch.pte = pte; 87 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 88 } 89 pte = pte_offset_kernel(pmd, vaddr); 90 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC)); 91 return 0; 92 err: 93 free_transition_pgtable(image); 94 return result; 95 } 96 97 static void *alloc_pgt_page(void *data) 98 { 99 struct kimage *image = (struct kimage *)data; 100 struct page *page; 101 void *p = NULL; 102 103 page = kimage_alloc_control_pages(image, 0); 104 if (page) { 105 p = page_address(page); 106 clear_page(p); 107 } 108 109 return p; 110 } 111 112 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 113 { 114 struct x86_mapping_info info = { 115 .alloc_pgt_page = alloc_pgt_page, 116 .context = image, 117 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 118 .kernpg_flag = _KERNPG_TABLE_NOENC, 119 }; 120 unsigned long mstart, mend; 121 pgd_t *level4p; 122 int result; 123 int i; 124 125 level4p = (pgd_t *)__va(start_pgtable); 126 clear_page(level4p); 127 128 if (direct_gbpages) 129 info.direct_gbpages = true; 130 131 for (i = 0; i < nr_pfn_mapped; i++) { 132 mstart = pfn_mapped[i].start << PAGE_SHIFT; 133 mend = pfn_mapped[i].end << PAGE_SHIFT; 134 135 result = kernel_ident_mapping_init(&info, 136 level4p, mstart, mend); 137 if (result) 138 return result; 139 } 140 141 /* 142 * segments's mem ranges could be outside 0 ~ max_pfn, 143 * for example when jump back to original kernel from kexeced kernel. 144 * or first kernel is booted with user mem map, and second kernel 145 * could be loaded out of that range. 146 */ 147 for (i = 0; i < image->nr_segments; i++) { 148 mstart = image->segment[i].mem; 149 mend = mstart + image->segment[i].memsz; 150 151 result = kernel_ident_mapping_init(&info, 152 level4p, mstart, mend); 153 154 if (result) 155 return result; 156 } 157 158 return init_transition_pgtable(image, level4p); 159 } 160 161 static void set_idt(void *newidt, u16 limit) 162 { 163 struct desc_ptr curidt; 164 165 /* x86-64 supports unaliged loads & stores */ 166 curidt.size = limit; 167 curidt.address = (unsigned long)newidt; 168 169 __asm__ __volatile__ ( 170 "lidtq %0\n" 171 : : "m" (curidt) 172 ); 173 }; 174 175 176 static void set_gdt(void *newgdt, u16 limit) 177 { 178 struct desc_ptr curgdt; 179 180 /* x86-64 supports unaligned loads & stores */ 181 curgdt.size = limit; 182 curgdt.address = (unsigned long)newgdt; 183 184 __asm__ __volatile__ ( 185 "lgdtq %0\n" 186 : : "m" (curgdt) 187 ); 188 }; 189 190 static void load_segments(void) 191 { 192 __asm__ __volatile__ ( 193 "\tmovl %0,%%ds\n" 194 "\tmovl %0,%%es\n" 195 "\tmovl %0,%%ss\n" 196 "\tmovl %0,%%fs\n" 197 "\tmovl %0,%%gs\n" 198 : : "a" (__KERNEL_DS) : "memory" 199 ); 200 } 201 202 #ifdef CONFIG_KEXEC_FILE 203 /* Update purgatory as needed after various image segments have been prepared */ 204 static int arch_update_purgatory(struct kimage *image) 205 { 206 int ret = 0; 207 208 if (!image->file_mode) 209 return 0; 210 211 /* Setup copying of backup region */ 212 if (image->type == KEXEC_TYPE_CRASH) { 213 ret = kexec_purgatory_get_set_symbol(image, 214 "purgatory_backup_dest", 215 &image->arch.backup_load_addr, 216 sizeof(image->arch.backup_load_addr), 0); 217 if (ret) 218 return ret; 219 220 ret = kexec_purgatory_get_set_symbol(image, 221 "purgatory_backup_src", 222 &image->arch.backup_src_start, 223 sizeof(image->arch.backup_src_start), 0); 224 if (ret) 225 return ret; 226 227 ret = kexec_purgatory_get_set_symbol(image, 228 "purgatory_backup_sz", 229 &image->arch.backup_src_sz, 230 sizeof(image->arch.backup_src_sz), 0); 231 if (ret) 232 return ret; 233 } 234 235 return ret; 236 } 237 #else /* !CONFIG_KEXEC_FILE */ 238 static inline int arch_update_purgatory(struct kimage *image) 239 { 240 return 0; 241 } 242 #endif /* CONFIG_KEXEC_FILE */ 243 244 int machine_kexec_prepare(struct kimage *image) 245 { 246 unsigned long start_pgtable; 247 int result; 248 249 /* Calculate the offsets */ 250 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 251 252 /* Setup the identity mapped 64bit page table */ 253 result = init_pgtable(image, start_pgtable); 254 if (result) 255 return result; 256 257 /* update purgatory as needed */ 258 result = arch_update_purgatory(image); 259 if (result) 260 return result; 261 262 return 0; 263 } 264 265 void machine_kexec_cleanup(struct kimage *image) 266 { 267 free_transition_pgtable(image); 268 } 269 270 /* 271 * Do not allocate memory (or fail in any way) in machine_kexec(). 272 * We are past the point of no return, committed to rebooting now. 273 */ 274 void machine_kexec(struct kimage *image) 275 { 276 unsigned long page_list[PAGES_NR]; 277 void *control_page; 278 int save_ftrace_enabled; 279 280 #ifdef CONFIG_KEXEC_JUMP 281 if (image->preserve_context) 282 save_processor_state(); 283 #endif 284 285 save_ftrace_enabled = __ftrace_enabled_save(); 286 287 /* Interrupts aren't acceptable while we reboot */ 288 local_irq_disable(); 289 hw_breakpoint_disable(); 290 291 if (image->preserve_context) { 292 #ifdef CONFIG_X86_IO_APIC 293 /* 294 * We need to put APICs in legacy mode so that we can 295 * get timer interrupts in second kernel. kexec/kdump 296 * paths already have calls to disable_IO_APIC() in 297 * one form or other. kexec jump path also need 298 * one. 299 */ 300 disable_IO_APIC(); 301 #endif 302 } 303 304 control_page = page_address(image->control_code_page) + PAGE_SIZE; 305 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 306 307 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 308 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 309 page_list[PA_TABLE_PAGE] = 310 (unsigned long)__pa(page_address(image->control_code_page)); 311 312 if (image->type == KEXEC_TYPE_DEFAULT) 313 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 314 << PAGE_SHIFT); 315 316 /* 317 * The segment registers are funny things, they have both a 318 * visible and an invisible part. Whenever the visible part is 319 * set to a specific selector, the invisible part is loaded 320 * with from a table in memory. At no other time is the 321 * descriptor table in memory accessed. 322 * 323 * I take advantage of this here by force loading the 324 * segments, before I zap the gdt with an invalid value. 325 */ 326 load_segments(); 327 /* 328 * The gdt & idt are now invalid. 329 * If you want to load them you must set up your own idt & gdt. 330 */ 331 set_gdt(phys_to_virt(0), 0); 332 set_idt(phys_to_virt(0), 0); 333 334 /* now call it */ 335 image->start = relocate_kernel((unsigned long)image->head, 336 (unsigned long)page_list, 337 image->start, 338 image->preserve_context, 339 sme_active()); 340 341 #ifdef CONFIG_KEXEC_JUMP 342 if (image->preserve_context) 343 restore_processor_state(); 344 #endif 345 346 __ftrace_enabled_restore(save_ftrace_enabled); 347 } 348 349 void arch_crash_save_vmcoreinfo(void) 350 { 351 VMCOREINFO_NUMBER(phys_base); 352 VMCOREINFO_SYMBOL(init_top_pgt); 353 354 #ifdef CONFIG_NUMA 355 VMCOREINFO_SYMBOL(node_data); 356 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 357 #endif 358 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 359 kaslr_offset()); 360 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); 361 } 362 363 /* arch-dependent functionality related to kexec file-based syscall */ 364 365 #ifdef CONFIG_KEXEC_FILE 366 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 367 unsigned long buf_len) 368 { 369 int i, ret = -ENOEXEC; 370 struct kexec_file_ops *fops; 371 372 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) { 373 fops = kexec_file_loaders[i]; 374 if (!fops || !fops->probe) 375 continue; 376 377 ret = fops->probe(buf, buf_len); 378 if (!ret) { 379 image->fops = fops; 380 return ret; 381 } 382 } 383 384 return ret; 385 } 386 387 void *arch_kexec_kernel_image_load(struct kimage *image) 388 { 389 vfree(image->arch.elf_headers); 390 image->arch.elf_headers = NULL; 391 392 if (!image->fops || !image->fops->load) 393 return ERR_PTR(-ENOEXEC); 394 395 return image->fops->load(image, image->kernel_buf, 396 image->kernel_buf_len, image->initrd_buf, 397 image->initrd_buf_len, image->cmdline_buf, 398 image->cmdline_buf_len); 399 } 400 401 int arch_kimage_file_post_load_cleanup(struct kimage *image) 402 { 403 if (!image->fops || !image->fops->cleanup) 404 return 0; 405 406 return image->fops->cleanup(image->image_loader_data); 407 } 408 409 #ifdef CONFIG_KEXEC_VERIFY_SIG 410 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel, 411 unsigned long kernel_len) 412 { 413 if (!image->fops || !image->fops->verify_sig) { 414 pr_debug("kernel loader does not support signature verification."); 415 return -EKEYREJECTED; 416 } 417 418 return image->fops->verify_sig(kernel, kernel_len); 419 } 420 #endif 421 422 /* 423 * Apply purgatory relocations. 424 * 425 * ehdr: Pointer to elf headers 426 * sechdrs: Pointer to section headers. 427 * relsec: section index of SHT_RELA section. 428 * 429 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 430 */ 431 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr, 432 Elf64_Shdr *sechdrs, unsigned int relsec) 433 { 434 unsigned int i; 435 Elf64_Rela *rel; 436 Elf64_Sym *sym; 437 void *location; 438 Elf64_Shdr *section, *symtabsec; 439 unsigned long address, sec_base, value; 440 const char *strtab, *name, *shstrtab; 441 442 /* 443 * ->sh_offset has been modified to keep the pointer to section 444 * contents in memory 445 */ 446 rel = (void *)sechdrs[relsec].sh_offset; 447 448 /* Section to which relocations apply */ 449 section = &sechdrs[sechdrs[relsec].sh_info]; 450 451 pr_debug("Applying relocate section %u to %u\n", relsec, 452 sechdrs[relsec].sh_info); 453 454 /* Associated symbol table */ 455 symtabsec = &sechdrs[sechdrs[relsec].sh_link]; 456 457 /* String table */ 458 if (symtabsec->sh_link >= ehdr->e_shnum) { 459 /* Invalid strtab section number */ 460 pr_err("Invalid string table section index %d\n", 461 symtabsec->sh_link); 462 return -ENOEXEC; 463 } 464 465 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset; 466 467 /* section header string table */ 468 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset; 469 470 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 471 472 /* 473 * rel[i].r_offset contains byte offset from beginning 474 * of section to the storage unit affected. 475 * 476 * This is location to update (->sh_offset). This is temporary 477 * buffer where section is currently loaded. This will finally 478 * be loaded to a different address later, pointed to by 479 * ->sh_addr. kexec takes care of moving it 480 * (kexec_load_segment()). 481 */ 482 location = (void *)(section->sh_offset + rel[i].r_offset); 483 484 /* Final address of the location */ 485 address = section->sh_addr + rel[i].r_offset; 486 487 /* 488 * rel[i].r_info contains information about symbol table index 489 * w.r.t which relocation must be made and type of relocation 490 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 491 * these respectively. 492 */ 493 sym = (Elf64_Sym *)symtabsec->sh_offset + 494 ELF64_R_SYM(rel[i].r_info); 495 496 if (sym->st_name) 497 name = strtab + sym->st_name; 498 else 499 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 500 501 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 502 name, sym->st_info, sym->st_shndx, sym->st_value, 503 sym->st_size); 504 505 if (sym->st_shndx == SHN_UNDEF) { 506 pr_err("Undefined symbol: %s\n", name); 507 return -ENOEXEC; 508 } 509 510 if (sym->st_shndx == SHN_COMMON) { 511 pr_err("symbol '%s' in common section\n", name); 512 return -ENOEXEC; 513 } 514 515 if (sym->st_shndx == SHN_ABS) 516 sec_base = 0; 517 else if (sym->st_shndx >= ehdr->e_shnum) { 518 pr_err("Invalid section %d for symbol %s\n", 519 sym->st_shndx, name); 520 return -ENOEXEC; 521 } else 522 sec_base = sechdrs[sym->st_shndx].sh_addr; 523 524 value = sym->st_value; 525 value += sec_base; 526 value += rel[i].r_addend; 527 528 switch (ELF64_R_TYPE(rel[i].r_info)) { 529 case R_X86_64_NONE: 530 break; 531 case R_X86_64_64: 532 *(u64 *)location = value; 533 break; 534 case R_X86_64_32: 535 *(u32 *)location = value; 536 if (value != *(u32 *)location) 537 goto overflow; 538 break; 539 case R_X86_64_32S: 540 *(s32 *)location = value; 541 if ((s64)value != *(s32 *)location) 542 goto overflow; 543 break; 544 case R_X86_64_PC32: 545 case R_X86_64_PLT32: 546 value -= (u64)address; 547 *(u32 *)location = value; 548 break; 549 default: 550 pr_err("Unknown rela relocation: %llu\n", 551 ELF64_R_TYPE(rel[i].r_info)); 552 return -ENOEXEC; 553 } 554 } 555 return 0; 556 557 overflow: 558 pr_err("Overflow in relocation type %d value 0x%lx\n", 559 (int)ELF64_R_TYPE(rel[i].r_info), value); 560 return -ENOEXEC; 561 } 562 #endif /* CONFIG_KEXEC_FILE */ 563 564 static int 565 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 566 { 567 struct page *page; 568 unsigned int nr_pages; 569 570 /* 571 * For physical range: [start, end]. We must skip the unassigned 572 * crashk resource with zero-valued "end" member. 573 */ 574 if (!end || start > end) 575 return 0; 576 577 page = pfn_to_page(start >> PAGE_SHIFT); 578 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 579 if (protect) 580 return set_pages_ro(page, nr_pages); 581 else 582 return set_pages_rw(page, nr_pages); 583 } 584 585 static void kexec_mark_crashkres(bool protect) 586 { 587 unsigned long control; 588 589 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 590 591 /* Don't touch the control code page used in crash_kexec().*/ 592 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 593 /* Control code page is located in the 2nd page. */ 594 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 595 control += KEXEC_CONTROL_PAGE_SIZE; 596 kexec_mark_range(control, crashk_res.end, protect); 597 } 598 599 void arch_kexec_protect_crashkres(void) 600 { 601 kexec_mark_crashkres(true); 602 } 603 604 void arch_kexec_unprotect_crashkres(void) 605 { 606 kexec_mark_crashkres(false); 607 } 608 609 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 610 { 611 /* 612 * If SME is active we need to be sure that kexec pages are 613 * not encrypted because when we boot to the new kernel the 614 * pages won't be accessed encrypted (initially). 615 */ 616 return set_memory_decrypted((unsigned long)vaddr, pages); 617 } 618 619 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 620 { 621 /* 622 * If SME is active we need to reset the pages back to being 623 * an encrypted mapping before freeing them. 624 */ 625 set_memory_encrypted((unsigned long)vaddr, pages); 626 } 627