1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * handle transition of Linux booting another kernel
4  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt)	"kexec: " fmt
8 
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 
21 #include <asm/init.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 
31 #ifdef CONFIG_ACPI
32 /*
33  * Used while adding mapping for ACPI tables.
34  * Can be reused when other iomem regions need be mapped
35  */
36 struct init_pgtable_data {
37 	struct x86_mapping_info *info;
38 	pgd_t *level4p;
39 };
40 
41 static int mem_region_callback(struct resource *res, void *arg)
42 {
43 	struct init_pgtable_data *data = arg;
44 	unsigned long mstart, mend;
45 
46 	mstart = res->start;
47 	mend = mstart + resource_size(res) - 1;
48 
49 	return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
50 }
51 
52 static int
53 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
54 {
55 	struct init_pgtable_data data;
56 	unsigned long flags;
57 	int ret;
58 
59 	data.info = info;
60 	data.level4p = level4p;
61 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
62 
63 	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
64 				  &data, mem_region_callback);
65 	if (ret && ret != -EINVAL)
66 		return ret;
67 
68 	/* ACPI tables could be located in ACPI Non-volatile Storage region */
69 	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
70 				  &data, mem_region_callback);
71 	if (ret && ret != -EINVAL)
72 		return ret;
73 
74 	return 0;
75 }
76 #else
77 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
78 #endif
79 
80 #ifdef CONFIG_KEXEC_FILE
81 const struct kexec_file_ops * const kexec_file_loaders[] = {
82 		&kexec_bzImage64_ops,
83 		NULL
84 };
85 #endif
86 
87 static int
88 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
89 {
90 #ifdef CONFIG_EFI
91 	unsigned long mstart, mend;
92 
93 	if (!efi_enabled(EFI_BOOT))
94 		return 0;
95 
96 	mstart = (boot_params.efi_info.efi_systab |
97 			((u64)boot_params.efi_info.efi_systab_hi<<32));
98 
99 	if (efi_enabled(EFI_64BIT))
100 		mend = mstart + sizeof(efi_system_table_64_t);
101 	else
102 		mend = mstart + sizeof(efi_system_table_32_t);
103 
104 	if (!mstart)
105 		return 0;
106 
107 	return kernel_ident_mapping_init(info, level4p, mstart, mend);
108 #endif
109 	return 0;
110 }
111 
112 static void free_transition_pgtable(struct kimage *image)
113 {
114 	free_page((unsigned long)image->arch.p4d);
115 	image->arch.p4d = NULL;
116 	free_page((unsigned long)image->arch.pud);
117 	image->arch.pud = NULL;
118 	free_page((unsigned long)image->arch.pmd);
119 	image->arch.pmd = NULL;
120 	free_page((unsigned long)image->arch.pte);
121 	image->arch.pte = NULL;
122 }
123 
124 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
125 {
126 	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
127 	unsigned long vaddr, paddr;
128 	int result = -ENOMEM;
129 	p4d_t *p4d;
130 	pud_t *pud;
131 	pmd_t *pmd;
132 	pte_t *pte;
133 
134 	vaddr = (unsigned long)relocate_kernel;
135 	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
136 	pgd += pgd_index(vaddr);
137 	if (!pgd_present(*pgd)) {
138 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
139 		if (!p4d)
140 			goto err;
141 		image->arch.p4d = p4d;
142 		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
143 	}
144 	p4d = p4d_offset(pgd, vaddr);
145 	if (!p4d_present(*p4d)) {
146 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
147 		if (!pud)
148 			goto err;
149 		image->arch.pud = pud;
150 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
151 	}
152 	pud = pud_offset(p4d, vaddr);
153 	if (!pud_present(*pud)) {
154 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
155 		if (!pmd)
156 			goto err;
157 		image->arch.pmd = pmd;
158 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
159 	}
160 	pmd = pmd_offset(pud, vaddr);
161 	if (!pmd_present(*pmd)) {
162 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
163 		if (!pte)
164 			goto err;
165 		image->arch.pte = pte;
166 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
167 	}
168 	pte = pte_offset_kernel(pmd, vaddr);
169 
170 	if (sev_active())
171 		prot = PAGE_KERNEL_EXEC;
172 
173 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
174 	return 0;
175 err:
176 	return result;
177 }
178 
179 static void *alloc_pgt_page(void *data)
180 {
181 	struct kimage *image = (struct kimage *)data;
182 	struct page *page;
183 	void *p = NULL;
184 
185 	page = kimage_alloc_control_pages(image, 0);
186 	if (page) {
187 		p = page_address(page);
188 		clear_page(p);
189 	}
190 
191 	return p;
192 }
193 
194 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
195 {
196 	struct x86_mapping_info info = {
197 		.alloc_pgt_page	= alloc_pgt_page,
198 		.context	= image,
199 		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
200 		.kernpg_flag	= _KERNPG_TABLE_NOENC,
201 	};
202 	unsigned long mstart, mend;
203 	pgd_t *level4p;
204 	int result;
205 	int i;
206 
207 	level4p = (pgd_t *)__va(start_pgtable);
208 	clear_page(level4p);
209 
210 	if (sev_active()) {
211 		info.page_flag   |= _PAGE_ENC;
212 		info.kernpg_flag |= _PAGE_ENC;
213 	}
214 
215 	if (direct_gbpages)
216 		info.direct_gbpages = true;
217 
218 	for (i = 0; i < nr_pfn_mapped; i++) {
219 		mstart = pfn_mapped[i].start << PAGE_SHIFT;
220 		mend   = pfn_mapped[i].end << PAGE_SHIFT;
221 
222 		result = kernel_ident_mapping_init(&info,
223 						 level4p, mstart, mend);
224 		if (result)
225 			return result;
226 	}
227 
228 	/*
229 	 * segments's mem ranges could be outside 0 ~ max_pfn,
230 	 * for example when jump back to original kernel from kexeced kernel.
231 	 * or first kernel is booted with user mem map, and second kernel
232 	 * could be loaded out of that range.
233 	 */
234 	for (i = 0; i < image->nr_segments; i++) {
235 		mstart = image->segment[i].mem;
236 		mend   = mstart + image->segment[i].memsz;
237 
238 		result = kernel_ident_mapping_init(&info,
239 						 level4p, mstart, mend);
240 
241 		if (result)
242 			return result;
243 	}
244 
245 	/*
246 	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
247 	 * not covered by pfn_mapped.
248 	 */
249 	result = map_efi_systab(&info, level4p);
250 	if (result)
251 		return result;
252 
253 	result = map_acpi_tables(&info, level4p);
254 	if (result)
255 		return result;
256 
257 	return init_transition_pgtable(image, level4p);
258 }
259 
260 static void set_idt(void *newidt, u16 limit)
261 {
262 	struct desc_ptr curidt;
263 
264 	/* x86-64 supports unaliged loads & stores */
265 	curidt.size    = limit;
266 	curidt.address = (unsigned long)newidt;
267 
268 	__asm__ __volatile__ (
269 		"lidtq %0\n"
270 		: : "m" (curidt)
271 		);
272 };
273 
274 
275 static void set_gdt(void *newgdt, u16 limit)
276 {
277 	struct desc_ptr curgdt;
278 
279 	/* x86-64 supports unaligned loads & stores */
280 	curgdt.size    = limit;
281 	curgdt.address = (unsigned long)newgdt;
282 
283 	__asm__ __volatile__ (
284 		"lgdtq %0\n"
285 		: : "m" (curgdt)
286 		);
287 };
288 
289 static void load_segments(void)
290 {
291 	__asm__ __volatile__ (
292 		"\tmovl %0,%%ds\n"
293 		"\tmovl %0,%%es\n"
294 		"\tmovl %0,%%ss\n"
295 		"\tmovl %0,%%fs\n"
296 		"\tmovl %0,%%gs\n"
297 		: : "a" (__KERNEL_DS) : "memory"
298 		);
299 }
300 
301 #ifdef CONFIG_KEXEC_FILE
302 /* Update purgatory as needed after various image segments have been prepared */
303 static int arch_update_purgatory(struct kimage *image)
304 {
305 	int ret = 0;
306 
307 	if (!image->file_mode)
308 		return 0;
309 
310 	/* Setup copying of backup region */
311 	if (image->type == KEXEC_TYPE_CRASH) {
312 		ret = kexec_purgatory_get_set_symbol(image,
313 				"purgatory_backup_dest",
314 				&image->arch.backup_load_addr,
315 				sizeof(image->arch.backup_load_addr), 0);
316 		if (ret)
317 			return ret;
318 
319 		ret = kexec_purgatory_get_set_symbol(image,
320 				"purgatory_backup_src",
321 				&image->arch.backup_src_start,
322 				sizeof(image->arch.backup_src_start), 0);
323 		if (ret)
324 			return ret;
325 
326 		ret = kexec_purgatory_get_set_symbol(image,
327 				"purgatory_backup_sz",
328 				&image->arch.backup_src_sz,
329 				sizeof(image->arch.backup_src_sz), 0);
330 		if (ret)
331 			return ret;
332 	}
333 
334 	return ret;
335 }
336 #else /* !CONFIG_KEXEC_FILE */
337 static inline int arch_update_purgatory(struct kimage *image)
338 {
339 	return 0;
340 }
341 #endif /* CONFIG_KEXEC_FILE */
342 
343 int machine_kexec_prepare(struct kimage *image)
344 {
345 	unsigned long start_pgtable;
346 	int result;
347 
348 	/* Calculate the offsets */
349 	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
350 
351 	/* Setup the identity mapped 64bit page table */
352 	result = init_pgtable(image, start_pgtable);
353 	if (result)
354 		return result;
355 
356 	/* update purgatory as needed */
357 	result = arch_update_purgatory(image);
358 	if (result)
359 		return result;
360 
361 	return 0;
362 }
363 
364 void machine_kexec_cleanup(struct kimage *image)
365 {
366 	free_transition_pgtable(image);
367 }
368 
369 /*
370  * Do not allocate memory (or fail in any way) in machine_kexec().
371  * We are past the point of no return, committed to rebooting now.
372  */
373 void machine_kexec(struct kimage *image)
374 {
375 	unsigned long page_list[PAGES_NR];
376 	void *control_page;
377 	int save_ftrace_enabled;
378 
379 #ifdef CONFIG_KEXEC_JUMP
380 	if (image->preserve_context)
381 		save_processor_state();
382 #endif
383 
384 	save_ftrace_enabled = __ftrace_enabled_save();
385 
386 	/* Interrupts aren't acceptable while we reboot */
387 	local_irq_disable();
388 	hw_breakpoint_disable();
389 
390 	if (image->preserve_context) {
391 #ifdef CONFIG_X86_IO_APIC
392 		/*
393 		 * We need to put APICs in legacy mode so that we can
394 		 * get timer interrupts in second kernel. kexec/kdump
395 		 * paths already have calls to restore_boot_irq_mode()
396 		 * in one form or other. kexec jump path also need one.
397 		 */
398 		clear_IO_APIC();
399 		restore_boot_irq_mode();
400 #endif
401 	}
402 
403 	control_page = page_address(image->control_code_page) + PAGE_SIZE;
404 	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
405 
406 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
407 	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
408 	page_list[PA_TABLE_PAGE] =
409 	  (unsigned long)__pa(page_address(image->control_code_page));
410 
411 	if (image->type == KEXEC_TYPE_DEFAULT)
412 		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
413 						<< PAGE_SHIFT);
414 
415 	/*
416 	 * The segment registers are funny things, they have both a
417 	 * visible and an invisible part.  Whenever the visible part is
418 	 * set to a specific selector, the invisible part is loaded
419 	 * with from a table in memory.  At no other time is the
420 	 * descriptor table in memory accessed.
421 	 *
422 	 * I take advantage of this here by force loading the
423 	 * segments, before I zap the gdt with an invalid value.
424 	 */
425 	load_segments();
426 	/*
427 	 * The gdt & idt are now invalid.
428 	 * If you want to load them you must set up your own idt & gdt.
429 	 */
430 	set_gdt(phys_to_virt(0), 0);
431 	set_idt(phys_to_virt(0), 0);
432 
433 	/* now call it */
434 	image->start = relocate_kernel((unsigned long)image->head,
435 				       (unsigned long)page_list,
436 				       image->start,
437 				       image->preserve_context,
438 				       sme_active());
439 
440 #ifdef CONFIG_KEXEC_JUMP
441 	if (image->preserve_context)
442 		restore_processor_state();
443 #endif
444 
445 	__ftrace_enabled_restore(save_ftrace_enabled);
446 }
447 
448 void arch_crash_save_vmcoreinfo(void)
449 {
450 	u64 sme_mask = sme_me_mask;
451 
452 	VMCOREINFO_NUMBER(phys_base);
453 	VMCOREINFO_SYMBOL(init_top_pgt);
454 	vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n",
455 			pgtable_l5_enabled());
456 
457 #ifdef CONFIG_NUMA
458 	VMCOREINFO_SYMBOL(node_data);
459 	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
460 #endif
461 	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
462 			      kaslr_offset());
463 	VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
464 	VMCOREINFO_NUMBER(sme_mask);
465 }
466 
467 /* arch-dependent functionality related to kexec file-based syscall */
468 
469 #ifdef CONFIG_KEXEC_FILE
470 void *arch_kexec_kernel_image_load(struct kimage *image)
471 {
472 	vfree(image->arch.elf_headers);
473 	image->arch.elf_headers = NULL;
474 
475 	if (!image->fops || !image->fops->load)
476 		return ERR_PTR(-ENOEXEC);
477 
478 	return image->fops->load(image, image->kernel_buf,
479 				 image->kernel_buf_len, image->initrd_buf,
480 				 image->initrd_buf_len, image->cmdline_buf,
481 				 image->cmdline_buf_len);
482 }
483 
484 /*
485  * Apply purgatory relocations.
486  *
487  * @pi:		Purgatory to be relocated.
488  * @section:	Section relocations applying to.
489  * @relsec:	Section containing RELAs.
490  * @symtabsec:	Corresponding symtab.
491  *
492  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
493  */
494 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
495 				     Elf_Shdr *section, const Elf_Shdr *relsec,
496 				     const Elf_Shdr *symtabsec)
497 {
498 	unsigned int i;
499 	Elf64_Rela *rel;
500 	Elf64_Sym *sym;
501 	void *location;
502 	unsigned long address, sec_base, value;
503 	const char *strtab, *name, *shstrtab;
504 	const Elf_Shdr *sechdrs;
505 
506 	/* String & section header string table */
507 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
508 	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
509 	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
510 
511 	rel = (void *)pi->ehdr + relsec->sh_offset;
512 
513 	pr_debug("Applying relocate section %s to %u\n",
514 		 shstrtab + relsec->sh_name, relsec->sh_info);
515 
516 	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
517 
518 		/*
519 		 * rel[i].r_offset contains byte offset from beginning
520 		 * of section to the storage unit affected.
521 		 *
522 		 * This is location to update. This is temporary buffer
523 		 * where section is currently loaded. This will finally be
524 		 * loaded to a different address later, pointed to by
525 		 * ->sh_addr. kexec takes care of moving it
526 		 *  (kexec_load_segment()).
527 		 */
528 		location = pi->purgatory_buf;
529 		location += section->sh_offset;
530 		location += rel[i].r_offset;
531 
532 		/* Final address of the location */
533 		address = section->sh_addr + rel[i].r_offset;
534 
535 		/*
536 		 * rel[i].r_info contains information about symbol table index
537 		 * w.r.t which relocation must be made and type of relocation
538 		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
539 		 * these respectively.
540 		 */
541 		sym = (void *)pi->ehdr + symtabsec->sh_offset;
542 		sym += ELF64_R_SYM(rel[i].r_info);
543 
544 		if (sym->st_name)
545 			name = strtab + sym->st_name;
546 		else
547 			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
548 
549 		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
550 			 name, sym->st_info, sym->st_shndx, sym->st_value,
551 			 sym->st_size);
552 
553 		if (sym->st_shndx == SHN_UNDEF) {
554 			pr_err("Undefined symbol: %s\n", name);
555 			return -ENOEXEC;
556 		}
557 
558 		if (sym->st_shndx == SHN_COMMON) {
559 			pr_err("symbol '%s' in common section\n", name);
560 			return -ENOEXEC;
561 		}
562 
563 		if (sym->st_shndx == SHN_ABS)
564 			sec_base = 0;
565 		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
566 			pr_err("Invalid section %d for symbol %s\n",
567 			       sym->st_shndx, name);
568 			return -ENOEXEC;
569 		} else
570 			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
571 
572 		value = sym->st_value;
573 		value += sec_base;
574 		value += rel[i].r_addend;
575 
576 		switch (ELF64_R_TYPE(rel[i].r_info)) {
577 		case R_X86_64_NONE:
578 			break;
579 		case R_X86_64_64:
580 			*(u64 *)location = value;
581 			break;
582 		case R_X86_64_32:
583 			*(u32 *)location = value;
584 			if (value != *(u32 *)location)
585 				goto overflow;
586 			break;
587 		case R_X86_64_32S:
588 			*(s32 *)location = value;
589 			if ((s64)value != *(s32 *)location)
590 				goto overflow;
591 			break;
592 		case R_X86_64_PC32:
593 		case R_X86_64_PLT32:
594 			value -= (u64)address;
595 			*(u32 *)location = value;
596 			break;
597 		default:
598 			pr_err("Unknown rela relocation: %llu\n",
599 			       ELF64_R_TYPE(rel[i].r_info));
600 			return -ENOEXEC;
601 		}
602 	}
603 	return 0;
604 
605 overflow:
606 	pr_err("Overflow in relocation type %d value 0x%lx\n",
607 	       (int)ELF64_R_TYPE(rel[i].r_info), value);
608 	return -ENOEXEC;
609 }
610 #endif /* CONFIG_KEXEC_FILE */
611 
612 static int
613 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
614 {
615 	struct page *page;
616 	unsigned int nr_pages;
617 
618 	/*
619 	 * For physical range: [start, end]. We must skip the unassigned
620 	 * crashk resource with zero-valued "end" member.
621 	 */
622 	if (!end || start > end)
623 		return 0;
624 
625 	page = pfn_to_page(start >> PAGE_SHIFT);
626 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
627 	if (protect)
628 		return set_pages_ro(page, nr_pages);
629 	else
630 		return set_pages_rw(page, nr_pages);
631 }
632 
633 static void kexec_mark_crashkres(bool protect)
634 {
635 	unsigned long control;
636 
637 	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
638 
639 	/* Don't touch the control code page used in crash_kexec().*/
640 	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
641 	/* Control code page is located in the 2nd page. */
642 	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
643 	control += KEXEC_CONTROL_PAGE_SIZE;
644 	kexec_mark_range(control, crashk_res.end, protect);
645 }
646 
647 void arch_kexec_protect_crashkres(void)
648 {
649 	kexec_mark_crashkres(true);
650 }
651 
652 void arch_kexec_unprotect_crashkres(void)
653 {
654 	kexec_mark_crashkres(false);
655 }
656 
657 /*
658  * During a traditional boot under SME, SME will encrypt the kernel,
659  * so the SME kexec kernel also needs to be un-encrypted in order to
660  * replicate a normal SME boot.
661  *
662  * During a traditional boot under SEV, the kernel has already been
663  * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
664  * order to replicate a normal SEV boot.
665  */
666 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
667 {
668 	if (sev_active())
669 		return 0;
670 
671 	/*
672 	 * If SME is active we need to be sure that kexec pages are
673 	 * not encrypted because when we boot to the new kernel the
674 	 * pages won't be accessed encrypted (initially).
675 	 */
676 	return set_memory_decrypted((unsigned long)vaddr, pages);
677 }
678 
679 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
680 {
681 	if (sev_active())
682 		return;
683 
684 	/*
685 	 * If SME is active we need to reset the pages back to being
686 	 * an encrypted mapping before freeing them.
687 	 */
688 	set_memory_encrypted((unsigned long)vaddr, pages);
689 }
690