1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 #include <linux/vmalloc.h> 21 22 #include <asm/init.h> 23 #include <asm/pgtable.h> 24 #include <asm/tlbflush.h> 25 #include <asm/mmu_context.h> 26 #include <asm/io_apic.h> 27 #include <asm/debugreg.h> 28 #include <asm/kexec-bzimage64.h> 29 #include <asm/setup.h> 30 31 #ifdef CONFIG_KEXEC_FILE 32 static struct kexec_file_ops *kexec_file_loaders[] = { 33 &kexec_bzImage64_ops, 34 }; 35 #endif 36 37 static void free_transition_pgtable(struct kimage *image) 38 { 39 free_page((unsigned long)image->arch.pud); 40 free_page((unsigned long)image->arch.pmd); 41 free_page((unsigned long)image->arch.pte); 42 } 43 44 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 45 { 46 pud_t *pud; 47 pmd_t *pmd; 48 pte_t *pte; 49 unsigned long vaddr, paddr; 50 int result = -ENOMEM; 51 52 vaddr = (unsigned long)relocate_kernel; 53 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 54 pgd += pgd_index(vaddr); 55 if (!pgd_present(*pgd)) { 56 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 57 if (!pud) 58 goto err; 59 image->arch.pud = pud; 60 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); 61 } 62 pud = pud_offset(pgd, vaddr); 63 if (!pud_present(*pud)) { 64 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 65 if (!pmd) 66 goto err; 67 image->arch.pmd = pmd; 68 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 69 } 70 pmd = pmd_offset(pud, vaddr); 71 if (!pmd_present(*pmd)) { 72 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 73 if (!pte) 74 goto err; 75 image->arch.pte = pte; 76 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 77 } 78 pte = pte_offset_kernel(pmd, vaddr); 79 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC)); 80 return 0; 81 err: 82 free_transition_pgtable(image); 83 return result; 84 } 85 86 static void *alloc_pgt_page(void *data) 87 { 88 struct kimage *image = (struct kimage *)data; 89 struct page *page; 90 void *p = NULL; 91 92 page = kimage_alloc_control_pages(image, 0); 93 if (page) { 94 p = page_address(page); 95 clear_page(p); 96 } 97 98 return p; 99 } 100 101 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 102 { 103 struct x86_mapping_info info = { 104 .alloc_pgt_page = alloc_pgt_page, 105 .context = image, 106 .pmd_flag = __PAGE_KERNEL_LARGE_EXEC, 107 }; 108 unsigned long mstart, mend; 109 pgd_t *level4p; 110 int result; 111 int i; 112 113 level4p = (pgd_t *)__va(start_pgtable); 114 clear_page(level4p); 115 for (i = 0; i < nr_pfn_mapped; i++) { 116 mstart = pfn_mapped[i].start << PAGE_SHIFT; 117 mend = pfn_mapped[i].end << PAGE_SHIFT; 118 119 result = kernel_ident_mapping_init(&info, 120 level4p, mstart, mend); 121 if (result) 122 return result; 123 } 124 125 /* 126 * segments's mem ranges could be outside 0 ~ max_pfn, 127 * for example when jump back to original kernel from kexeced kernel. 128 * or first kernel is booted with user mem map, and second kernel 129 * could be loaded out of that range. 130 */ 131 for (i = 0; i < image->nr_segments; i++) { 132 mstart = image->segment[i].mem; 133 mend = mstart + image->segment[i].memsz; 134 135 result = kernel_ident_mapping_init(&info, 136 level4p, mstart, mend); 137 138 if (result) 139 return result; 140 } 141 142 return init_transition_pgtable(image, level4p); 143 } 144 145 static void set_idt(void *newidt, u16 limit) 146 { 147 struct desc_ptr curidt; 148 149 /* x86-64 supports unaliged loads & stores */ 150 curidt.size = limit; 151 curidt.address = (unsigned long)newidt; 152 153 __asm__ __volatile__ ( 154 "lidtq %0\n" 155 : : "m" (curidt) 156 ); 157 }; 158 159 160 static void set_gdt(void *newgdt, u16 limit) 161 { 162 struct desc_ptr curgdt; 163 164 /* x86-64 supports unaligned loads & stores */ 165 curgdt.size = limit; 166 curgdt.address = (unsigned long)newgdt; 167 168 __asm__ __volatile__ ( 169 "lgdtq %0\n" 170 : : "m" (curgdt) 171 ); 172 }; 173 174 static void load_segments(void) 175 { 176 __asm__ __volatile__ ( 177 "\tmovl %0,%%ds\n" 178 "\tmovl %0,%%es\n" 179 "\tmovl %0,%%ss\n" 180 "\tmovl %0,%%fs\n" 181 "\tmovl %0,%%gs\n" 182 : : "a" (__KERNEL_DS) : "memory" 183 ); 184 } 185 186 #ifdef CONFIG_KEXEC_FILE 187 /* Update purgatory as needed after various image segments have been prepared */ 188 static int arch_update_purgatory(struct kimage *image) 189 { 190 int ret = 0; 191 192 if (!image->file_mode) 193 return 0; 194 195 /* Setup copying of backup region */ 196 if (image->type == KEXEC_TYPE_CRASH) { 197 ret = kexec_purgatory_get_set_symbol(image, "backup_dest", 198 &image->arch.backup_load_addr, 199 sizeof(image->arch.backup_load_addr), 0); 200 if (ret) 201 return ret; 202 203 ret = kexec_purgatory_get_set_symbol(image, "backup_src", 204 &image->arch.backup_src_start, 205 sizeof(image->arch.backup_src_start), 0); 206 if (ret) 207 return ret; 208 209 ret = kexec_purgatory_get_set_symbol(image, "backup_sz", 210 &image->arch.backup_src_sz, 211 sizeof(image->arch.backup_src_sz), 0); 212 if (ret) 213 return ret; 214 } 215 216 return ret; 217 } 218 #else /* !CONFIG_KEXEC_FILE */ 219 static inline int arch_update_purgatory(struct kimage *image) 220 { 221 return 0; 222 } 223 #endif /* CONFIG_KEXEC_FILE */ 224 225 int machine_kexec_prepare(struct kimage *image) 226 { 227 unsigned long start_pgtable; 228 int result; 229 230 /* Calculate the offsets */ 231 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 232 233 /* Setup the identity mapped 64bit page table */ 234 result = init_pgtable(image, start_pgtable); 235 if (result) 236 return result; 237 238 /* update purgatory as needed */ 239 result = arch_update_purgatory(image); 240 if (result) 241 return result; 242 243 return 0; 244 } 245 246 void machine_kexec_cleanup(struct kimage *image) 247 { 248 free_transition_pgtable(image); 249 } 250 251 /* 252 * Do not allocate memory (or fail in any way) in machine_kexec(). 253 * We are past the point of no return, committed to rebooting now. 254 */ 255 void machine_kexec(struct kimage *image) 256 { 257 unsigned long page_list[PAGES_NR]; 258 void *control_page; 259 int save_ftrace_enabled; 260 261 #ifdef CONFIG_KEXEC_JUMP 262 if (image->preserve_context) 263 save_processor_state(); 264 #endif 265 266 save_ftrace_enabled = __ftrace_enabled_save(); 267 268 /* Interrupts aren't acceptable while we reboot */ 269 local_irq_disable(); 270 hw_breakpoint_disable(); 271 272 if (image->preserve_context) { 273 #ifdef CONFIG_X86_IO_APIC 274 /* 275 * We need to put APICs in legacy mode so that we can 276 * get timer interrupts in second kernel. kexec/kdump 277 * paths already have calls to disable_IO_APIC() in 278 * one form or other. kexec jump path also need 279 * one. 280 */ 281 disable_IO_APIC(); 282 #endif 283 } 284 285 control_page = page_address(image->control_code_page) + PAGE_SIZE; 286 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 287 288 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 289 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 290 page_list[PA_TABLE_PAGE] = 291 (unsigned long)__pa(page_address(image->control_code_page)); 292 293 if (image->type == KEXEC_TYPE_DEFAULT) 294 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 295 << PAGE_SHIFT); 296 297 /* 298 * The segment registers are funny things, they have both a 299 * visible and an invisible part. Whenever the visible part is 300 * set to a specific selector, the invisible part is loaded 301 * with from a table in memory. At no other time is the 302 * descriptor table in memory accessed. 303 * 304 * I take advantage of this here by force loading the 305 * segments, before I zap the gdt with an invalid value. 306 */ 307 load_segments(); 308 /* 309 * The gdt & idt are now invalid. 310 * If you want to load them you must set up your own idt & gdt. 311 */ 312 set_gdt(phys_to_virt(0), 0); 313 set_idt(phys_to_virt(0), 0); 314 315 /* now call it */ 316 image->start = relocate_kernel((unsigned long)image->head, 317 (unsigned long)page_list, 318 image->start, 319 image->preserve_context); 320 321 #ifdef CONFIG_KEXEC_JUMP 322 if (image->preserve_context) 323 restore_processor_state(); 324 #endif 325 326 __ftrace_enabled_restore(save_ftrace_enabled); 327 } 328 329 void arch_crash_save_vmcoreinfo(void) 330 { 331 VMCOREINFO_NUMBER(phys_base); 332 VMCOREINFO_SYMBOL(init_level4_pgt); 333 334 #ifdef CONFIG_NUMA 335 VMCOREINFO_SYMBOL(node_data); 336 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 337 #endif 338 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 339 kaslr_offset()); 340 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); 341 } 342 343 /* arch-dependent functionality related to kexec file-based syscall */ 344 345 #ifdef CONFIG_KEXEC_FILE 346 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 347 unsigned long buf_len) 348 { 349 int i, ret = -ENOEXEC; 350 struct kexec_file_ops *fops; 351 352 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) { 353 fops = kexec_file_loaders[i]; 354 if (!fops || !fops->probe) 355 continue; 356 357 ret = fops->probe(buf, buf_len); 358 if (!ret) { 359 image->fops = fops; 360 return ret; 361 } 362 } 363 364 return ret; 365 } 366 367 void *arch_kexec_kernel_image_load(struct kimage *image) 368 { 369 vfree(image->arch.elf_headers); 370 image->arch.elf_headers = NULL; 371 372 if (!image->fops || !image->fops->load) 373 return ERR_PTR(-ENOEXEC); 374 375 return image->fops->load(image, image->kernel_buf, 376 image->kernel_buf_len, image->initrd_buf, 377 image->initrd_buf_len, image->cmdline_buf, 378 image->cmdline_buf_len); 379 } 380 381 int arch_kimage_file_post_load_cleanup(struct kimage *image) 382 { 383 if (!image->fops || !image->fops->cleanup) 384 return 0; 385 386 return image->fops->cleanup(image->image_loader_data); 387 } 388 389 #ifdef CONFIG_KEXEC_VERIFY_SIG 390 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel, 391 unsigned long kernel_len) 392 { 393 if (!image->fops || !image->fops->verify_sig) { 394 pr_debug("kernel loader does not support signature verification."); 395 return -EKEYREJECTED; 396 } 397 398 return image->fops->verify_sig(kernel, kernel_len); 399 } 400 #endif 401 402 /* 403 * Apply purgatory relocations. 404 * 405 * ehdr: Pointer to elf headers 406 * sechdrs: Pointer to section headers. 407 * relsec: section index of SHT_RELA section. 408 * 409 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 410 */ 411 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr, 412 Elf64_Shdr *sechdrs, unsigned int relsec) 413 { 414 unsigned int i; 415 Elf64_Rela *rel; 416 Elf64_Sym *sym; 417 void *location; 418 Elf64_Shdr *section, *symtabsec; 419 unsigned long address, sec_base, value; 420 const char *strtab, *name, *shstrtab; 421 422 /* 423 * ->sh_offset has been modified to keep the pointer to section 424 * contents in memory 425 */ 426 rel = (void *)sechdrs[relsec].sh_offset; 427 428 /* Section to which relocations apply */ 429 section = &sechdrs[sechdrs[relsec].sh_info]; 430 431 pr_debug("Applying relocate section %u to %u\n", relsec, 432 sechdrs[relsec].sh_info); 433 434 /* Associated symbol table */ 435 symtabsec = &sechdrs[sechdrs[relsec].sh_link]; 436 437 /* String table */ 438 if (symtabsec->sh_link >= ehdr->e_shnum) { 439 /* Invalid strtab section number */ 440 pr_err("Invalid string table section index %d\n", 441 symtabsec->sh_link); 442 return -ENOEXEC; 443 } 444 445 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset; 446 447 /* section header string table */ 448 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset; 449 450 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 451 452 /* 453 * rel[i].r_offset contains byte offset from beginning 454 * of section to the storage unit affected. 455 * 456 * This is location to update (->sh_offset). This is temporary 457 * buffer where section is currently loaded. This will finally 458 * be loaded to a different address later, pointed to by 459 * ->sh_addr. kexec takes care of moving it 460 * (kexec_load_segment()). 461 */ 462 location = (void *)(section->sh_offset + rel[i].r_offset); 463 464 /* Final address of the location */ 465 address = section->sh_addr + rel[i].r_offset; 466 467 /* 468 * rel[i].r_info contains information about symbol table index 469 * w.r.t which relocation must be made and type of relocation 470 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 471 * these respectively. 472 */ 473 sym = (Elf64_Sym *)symtabsec->sh_offset + 474 ELF64_R_SYM(rel[i].r_info); 475 476 if (sym->st_name) 477 name = strtab + sym->st_name; 478 else 479 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 480 481 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 482 name, sym->st_info, sym->st_shndx, sym->st_value, 483 sym->st_size); 484 485 if (sym->st_shndx == SHN_UNDEF) { 486 pr_err("Undefined symbol: %s\n", name); 487 return -ENOEXEC; 488 } 489 490 if (sym->st_shndx == SHN_COMMON) { 491 pr_err("symbol '%s' in common section\n", name); 492 return -ENOEXEC; 493 } 494 495 if (sym->st_shndx == SHN_ABS) 496 sec_base = 0; 497 else if (sym->st_shndx >= ehdr->e_shnum) { 498 pr_err("Invalid section %d for symbol %s\n", 499 sym->st_shndx, name); 500 return -ENOEXEC; 501 } else 502 sec_base = sechdrs[sym->st_shndx].sh_addr; 503 504 value = sym->st_value; 505 value += sec_base; 506 value += rel[i].r_addend; 507 508 switch (ELF64_R_TYPE(rel[i].r_info)) { 509 case R_X86_64_NONE: 510 break; 511 case R_X86_64_64: 512 *(u64 *)location = value; 513 break; 514 case R_X86_64_32: 515 *(u32 *)location = value; 516 if (value != *(u32 *)location) 517 goto overflow; 518 break; 519 case R_X86_64_32S: 520 *(s32 *)location = value; 521 if ((s64)value != *(s32 *)location) 522 goto overflow; 523 break; 524 case R_X86_64_PC32: 525 value -= (u64)address; 526 *(u32 *)location = value; 527 break; 528 default: 529 pr_err("Unknown rela relocation: %llu\n", 530 ELF64_R_TYPE(rel[i].r_info)); 531 return -ENOEXEC; 532 } 533 } 534 return 0; 535 536 overflow: 537 pr_err("Overflow in relocation type %d value 0x%lx\n", 538 (int)ELF64_R_TYPE(rel[i].r_info), value); 539 return -ENOEXEC; 540 } 541 #endif /* CONFIG_KEXEC_FILE */ 542 543 static int 544 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 545 { 546 struct page *page; 547 unsigned int nr_pages; 548 549 /* 550 * For physical range: [start, end]. We must skip the unassigned 551 * crashk resource with zero-valued "end" member. 552 */ 553 if (!end || start > end) 554 return 0; 555 556 page = pfn_to_page(start >> PAGE_SHIFT); 557 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 558 if (protect) 559 return set_pages_ro(page, nr_pages); 560 else 561 return set_pages_rw(page, nr_pages); 562 } 563 564 static void kexec_mark_crashkres(bool protect) 565 { 566 unsigned long control; 567 568 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 569 570 /* Don't touch the control code page used in crash_kexec().*/ 571 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 572 /* Control code page is located in the 2nd page. */ 573 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 574 control += KEXEC_CONTROL_PAGE_SIZE; 575 kexec_mark_range(control, crashk_res.end, protect); 576 } 577 578 void arch_kexec_protect_crashkres(void) 579 { 580 kexec_mark_crashkres(true); 581 } 582 583 void arch_kexec_unprotect_crashkres(void) 584 { 585 kexec_mark_crashkres(false); 586 } 587