1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 #include <linux/vmalloc.h> 21 22 #include <asm/init.h> 23 #include <asm/pgtable.h> 24 #include <asm/tlbflush.h> 25 #include <asm/mmu_context.h> 26 #include <asm/io_apic.h> 27 #include <asm/debugreg.h> 28 #include <asm/kexec-bzimage64.h> 29 #include <asm/setup.h> 30 #include <asm/set_memory.h> 31 32 #ifdef CONFIG_KEXEC_FILE 33 static struct kexec_file_ops *kexec_file_loaders[] = { 34 &kexec_bzImage64_ops, 35 }; 36 #endif 37 38 static void free_transition_pgtable(struct kimage *image) 39 { 40 free_page((unsigned long)image->arch.p4d); 41 free_page((unsigned long)image->arch.pud); 42 free_page((unsigned long)image->arch.pmd); 43 free_page((unsigned long)image->arch.pte); 44 } 45 46 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 47 { 48 p4d_t *p4d; 49 pud_t *pud; 50 pmd_t *pmd; 51 pte_t *pte; 52 unsigned long vaddr, paddr; 53 int result = -ENOMEM; 54 55 vaddr = (unsigned long)relocate_kernel; 56 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 57 pgd += pgd_index(vaddr); 58 if (!pgd_present(*pgd)) { 59 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 60 if (!p4d) 61 goto err; 62 image->arch.p4d = p4d; 63 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 64 } 65 p4d = p4d_offset(pgd, vaddr); 66 if (!p4d_present(*p4d)) { 67 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 68 if (!pud) 69 goto err; 70 image->arch.pud = pud; 71 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 72 } 73 pud = pud_offset(p4d, vaddr); 74 if (!pud_present(*pud)) { 75 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 76 if (!pmd) 77 goto err; 78 image->arch.pmd = pmd; 79 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 80 } 81 pmd = pmd_offset(pud, vaddr); 82 if (!pmd_present(*pmd)) { 83 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 84 if (!pte) 85 goto err; 86 image->arch.pte = pte; 87 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 88 } 89 pte = pte_offset_kernel(pmd, vaddr); 90 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC)); 91 return 0; 92 err: 93 free_transition_pgtable(image); 94 return result; 95 } 96 97 static void *alloc_pgt_page(void *data) 98 { 99 struct kimage *image = (struct kimage *)data; 100 struct page *page; 101 void *p = NULL; 102 103 page = kimage_alloc_control_pages(image, 0); 104 if (page) { 105 p = page_address(page); 106 clear_page(p); 107 } 108 109 return p; 110 } 111 112 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 113 { 114 struct x86_mapping_info info = { 115 .alloc_pgt_page = alloc_pgt_page, 116 .context = image, 117 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 118 }; 119 unsigned long mstart, mend; 120 pgd_t *level4p; 121 int result; 122 int i; 123 124 level4p = (pgd_t *)__va(start_pgtable); 125 clear_page(level4p); 126 127 if (direct_gbpages) 128 info.direct_gbpages = true; 129 130 for (i = 0; i < nr_pfn_mapped; i++) { 131 mstart = pfn_mapped[i].start << PAGE_SHIFT; 132 mend = pfn_mapped[i].end << PAGE_SHIFT; 133 134 result = kernel_ident_mapping_init(&info, 135 level4p, mstart, mend); 136 if (result) 137 return result; 138 } 139 140 /* 141 * segments's mem ranges could be outside 0 ~ max_pfn, 142 * for example when jump back to original kernel from kexeced kernel. 143 * or first kernel is booted with user mem map, and second kernel 144 * could be loaded out of that range. 145 */ 146 for (i = 0; i < image->nr_segments; i++) { 147 mstart = image->segment[i].mem; 148 mend = mstart + image->segment[i].memsz; 149 150 result = kernel_ident_mapping_init(&info, 151 level4p, mstart, mend); 152 153 if (result) 154 return result; 155 } 156 157 return init_transition_pgtable(image, level4p); 158 } 159 160 static void set_idt(void *newidt, u16 limit) 161 { 162 struct desc_ptr curidt; 163 164 /* x86-64 supports unaliged loads & stores */ 165 curidt.size = limit; 166 curidt.address = (unsigned long)newidt; 167 168 __asm__ __volatile__ ( 169 "lidtq %0\n" 170 : : "m" (curidt) 171 ); 172 }; 173 174 175 static void set_gdt(void *newgdt, u16 limit) 176 { 177 struct desc_ptr curgdt; 178 179 /* x86-64 supports unaligned loads & stores */ 180 curgdt.size = limit; 181 curgdt.address = (unsigned long)newgdt; 182 183 __asm__ __volatile__ ( 184 "lgdtq %0\n" 185 : : "m" (curgdt) 186 ); 187 }; 188 189 static void load_segments(void) 190 { 191 __asm__ __volatile__ ( 192 "\tmovl %0,%%ds\n" 193 "\tmovl %0,%%es\n" 194 "\tmovl %0,%%ss\n" 195 "\tmovl %0,%%fs\n" 196 "\tmovl %0,%%gs\n" 197 : : "a" (__KERNEL_DS) : "memory" 198 ); 199 } 200 201 #ifdef CONFIG_KEXEC_FILE 202 /* Update purgatory as needed after various image segments have been prepared */ 203 static int arch_update_purgatory(struct kimage *image) 204 { 205 int ret = 0; 206 207 if (!image->file_mode) 208 return 0; 209 210 /* Setup copying of backup region */ 211 if (image->type == KEXEC_TYPE_CRASH) { 212 ret = kexec_purgatory_get_set_symbol(image, 213 "purgatory_backup_dest", 214 &image->arch.backup_load_addr, 215 sizeof(image->arch.backup_load_addr), 0); 216 if (ret) 217 return ret; 218 219 ret = kexec_purgatory_get_set_symbol(image, 220 "purgatory_backup_src", 221 &image->arch.backup_src_start, 222 sizeof(image->arch.backup_src_start), 0); 223 if (ret) 224 return ret; 225 226 ret = kexec_purgatory_get_set_symbol(image, 227 "purgatory_backup_sz", 228 &image->arch.backup_src_sz, 229 sizeof(image->arch.backup_src_sz), 0); 230 if (ret) 231 return ret; 232 } 233 234 return ret; 235 } 236 #else /* !CONFIG_KEXEC_FILE */ 237 static inline int arch_update_purgatory(struct kimage *image) 238 { 239 return 0; 240 } 241 #endif /* CONFIG_KEXEC_FILE */ 242 243 int machine_kexec_prepare(struct kimage *image) 244 { 245 unsigned long start_pgtable; 246 int result; 247 248 /* Calculate the offsets */ 249 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 250 251 /* Setup the identity mapped 64bit page table */ 252 result = init_pgtable(image, start_pgtable); 253 if (result) 254 return result; 255 256 /* update purgatory as needed */ 257 result = arch_update_purgatory(image); 258 if (result) 259 return result; 260 261 return 0; 262 } 263 264 void machine_kexec_cleanup(struct kimage *image) 265 { 266 free_transition_pgtable(image); 267 } 268 269 /* 270 * Do not allocate memory (or fail in any way) in machine_kexec(). 271 * We are past the point of no return, committed to rebooting now. 272 */ 273 void machine_kexec(struct kimage *image) 274 { 275 unsigned long page_list[PAGES_NR]; 276 void *control_page; 277 int save_ftrace_enabled; 278 279 #ifdef CONFIG_KEXEC_JUMP 280 if (image->preserve_context) 281 save_processor_state(); 282 #endif 283 284 save_ftrace_enabled = __ftrace_enabled_save(); 285 286 /* Interrupts aren't acceptable while we reboot */ 287 local_irq_disable(); 288 hw_breakpoint_disable(); 289 290 if (image->preserve_context) { 291 #ifdef CONFIG_X86_IO_APIC 292 /* 293 * We need to put APICs in legacy mode so that we can 294 * get timer interrupts in second kernel. kexec/kdump 295 * paths already have calls to disable_IO_APIC() in 296 * one form or other. kexec jump path also need 297 * one. 298 */ 299 disable_IO_APIC(); 300 #endif 301 } 302 303 control_page = page_address(image->control_code_page) + PAGE_SIZE; 304 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 305 306 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 307 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 308 page_list[PA_TABLE_PAGE] = 309 (unsigned long)__pa(page_address(image->control_code_page)); 310 311 if (image->type == KEXEC_TYPE_DEFAULT) 312 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 313 << PAGE_SHIFT); 314 315 /* 316 * The segment registers are funny things, they have both a 317 * visible and an invisible part. Whenever the visible part is 318 * set to a specific selector, the invisible part is loaded 319 * with from a table in memory. At no other time is the 320 * descriptor table in memory accessed. 321 * 322 * I take advantage of this here by force loading the 323 * segments, before I zap the gdt with an invalid value. 324 */ 325 load_segments(); 326 /* 327 * The gdt & idt are now invalid. 328 * If you want to load them you must set up your own idt & gdt. 329 */ 330 set_gdt(phys_to_virt(0), 0); 331 set_idt(phys_to_virt(0), 0); 332 333 /* now call it */ 334 image->start = relocate_kernel((unsigned long)image->head, 335 (unsigned long)page_list, 336 image->start, 337 image->preserve_context); 338 339 #ifdef CONFIG_KEXEC_JUMP 340 if (image->preserve_context) 341 restore_processor_state(); 342 #endif 343 344 __ftrace_enabled_restore(save_ftrace_enabled); 345 } 346 347 void arch_crash_save_vmcoreinfo(void) 348 { 349 VMCOREINFO_NUMBER(phys_base); 350 VMCOREINFO_SYMBOL(init_level4_pgt); 351 352 #ifdef CONFIG_NUMA 353 VMCOREINFO_SYMBOL(node_data); 354 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 355 #endif 356 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 357 kaslr_offset()); 358 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); 359 } 360 361 /* arch-dependent functionality related to kexec file-based syscall */ 362 363 #ifdef CONFIG_KEXEC_FILE 364 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 365 unsigned long buf_len) 366 { 367 int i, ret = -ENOEXEC; 368 struct kexec_file_ops *fops; 369 370 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) { 371 fops = kexec_file_loaders[i]; 372 if (!fops || !fops->probe) 373 continue; 374 375 ret = fops->probe(buf, buf_len); 376 if (!ret) { 377 image->fops = fops; 378 return ret; 379 } 380 } 381 382 return ret; 383 } 384 385 void *arch_kexec_kernel_image_load(struct kimage *image) 386 { 387 vfree(image->arch.elf_headers); 388 image->arch.elf_headers = NULL; 389 390 if (!image->fops || !image->fops->load) 391 return ERR_PTR(-ENOEXEC); 392 393 return image->fops->load(image, image->kernel_buf, 394 image->kernel_buf_len, image->initrd_buf, 395 image->initrd_buf_len, image->cmdline_buf, 396 image->cmdline_buf_len); 397 } 398 399 int arch_kimage_file_post_load_cleanup(struct kimage *image) 400 { 401 if (!image->fops || !image->fops->cleanup) 402 return 0; 403 404 return image->fops->cleanup(image->image_loader_data); 405 } 406 407 #ifdef CONFIG_KEXEC_VERIFY_SIG 408 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel, 409 unsigned long kernel_len) 410 { 411 if (!image->fops || !image->fops->verify_sig) { 412 pr_debug("kernel loader does not support signature verification."); 413 return -EKEYREJECTED; 414 } 415 416 return image->fops->verify_sig(kernel, kernel_len); 417 } 418 #endif 419 420 /* 421 * Apply purgatory relocations. 422 * 423 * ehdr: Pointer to elf headers 424 * sechdrs: Pointer to section headers. 425 * relsec: section index of SHT_RELA section. 426 * 427 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 428 */ 429 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr, 430 Elf64_Shdr *sechdrs, unsigned int relsec) 431 { 432 unsigned int i; 433 Elf64_Rela *rel; 434 Elf64_Sym *sym; 435 void *location; 436 Elf64_Shdr *section, *symtabsec; 437 unsigned long address, sec_base, value; 438 const char *strtab, *name, *shstrtab; 439 440 /* 441 * ->sh_offset has been modified to keep the pointer to section 442 * contents in memory 443 */ 444 rel = (void *)sechdrs[relsec].sh_offset; 445 446 /* Section to which relocations apply */ 447 section = &sechdrs[sechdrs[relsec].sh_info]; 448 449 pr_debug("Applying relocate section %u to %u\n", relsec, 450 sechdrs[relsec].sh_info); 451 452 /* Associated symbol table */ 453 symtabsec = &sechdrs[sechdrs[relsec].sh_link]; 454 455 /* String table */ 456 if (symtabsec->sh_link >= ehdr->e_shnum) { 457 /* Invalid strtab section number */ 458 pr_err("Invalid string table section index %d\n", 459 symtabsec->sh_link); 460 return -ENOEXEC; 461 } 462 463 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset; 464 465 /* section header string table */ 466 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset; 467 468 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 469 470 /* 471 * rel[i].r_offset contains byte offset from beginning 472 * of section to the storage unit affected. 473 * 474 * This is location to update (->sh_offset). This is temporary 475 * buffer where section is currently loaded. This will finally 476 * be loaded to a different address later, pointed to by 477 * ->sh_addr. kexec takes care of moving it 478 * (kexec_load_segment()). 479 */ 480 location = (void *)(section->sh_offset + rel[i].r_offset); 481 482 /* Final address of the location */ 483 address = section->sh_addr + rel[i].r_offset; 484 485 /* 486 * rel[i].r_info contains information about symbol table index 487 * w.r.t which relocation must be made and type of relocation 488 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 489 * these respectively. 490 */ 491 sym = (Elf64_Sym *)symtabsec->sh_offset + 492 ELF64_R_SYM(rel[i].r_info); 493 494 if (sym->st_name) 495 name = strtab + sym->st_name; 496 else 497 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 498 499 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 500 name, sym->st_info, sym->st_shndx, sym->st_value, 501 sym->st_size); 502 503 if (sym->st_shndx == SHN_UNDEF) { 504 pr_err("Undefined symbol: %s\n", name); 505 return -ENOEXEC; 506 } 507 508 if (sym->st_shndx == SHN_COMMON) { 509 pr_err("symbol '%s' in common section\n", name); 510 return -ENOEXEC; 511 } 512 513 if (sym->st_shndx == SHN_ABS) 514 sec_base = 0; 515 else if (sym->st_shndx >= ehdr->e_shnum) { 516 pr_err("Invalid section %d for symbol %s\n", 517 sym->st_shndx, name); 518 return -ENOEXEC; 519 } else 520 sec_base = sechdrs[sym->st_shndx].sh_addr; 521 522 value = sym->st_value; 523 value += sec_base; 524 value += rel[i].r_addend; 525 526 switch (ELF64_R_TYPE(rel[i].r_info)) { 527 case R_X86_64_NONE: 528 break; 529 case R_X86_64_64: 530 *(u64 *)location = value; 531 break; 532 case R_X86_64_32: 533 *(u32 *)location = value; 534 if (value != *(u32 *)location) 535 goto overflow; 536 break; 537 case R_X86_64_32S: 538 *(s32 *)location = value; 539 if ((s64)value != *(s32 *)location) 540 goto overflow; 541 break; 542 case R_X86_64_PC32: 543 value -= (u64)address; 544 *(u32 *)location = value; 545 break; 546 default: 547 pr_err("Unknown rela relocation: %llu\n", 548 ELF64_R_TYPE(rel[i].r_info)); 549 return -ENOEXEC; 550 } 551 } 552 return 0; 553 554 overflow: 555 pr_err("Overflow in relocation type %d value 0x%lx\n", 556 (int)ELF64_R_TYPE(rel[i].r_info), value); 557 return -ENOEXEC; 558 } 559 #endif /* CONFIG_KEXEC_FILE */ 560 561 static int 562 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 563 { 564 struct page *page; 565 unsigned int nr_pages; 566 567 /* 568 * For physical range: [start, end]. We must skip the unassigned 569 * crashk resource with zero-valued "end" member. 570 */ 571 if (!end || start > end) 572 return 0; 573 574 page = pfn_to_page(start >> PAGE_SHIFT); 575 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 576 if (protect) 577 return set_pages_ro(page, nr_pages); 578 else 579 return set_pages_rw(page, nr_pages); 580 } 581 582 static void kexec_mark_crashkres(bool protect) 583 { 584 unsigned long control; 585 586 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 587 588 /* Don't touch the control code page used in crash_kexec().*/ 589 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 590 /* Control code page is located in the 2nd page. */ 591 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 592 control += KEXEC_CONTROL_PAGE_SIZE; 593 kexec_mark_range(control, crashk_res.end, protect); 594 } 595 596 void arch_kexec_protect_crashkres(void) 597 { 598 kexec_mark_crashkres(true); 599 } 600 601 void arch_kexec_unprotect_crashkres(void) 602 { 603 kexec_mark_crashkres(false); 604 } 605