1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * handle transition of Linux booting another kernel 4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) "kexec: " fmt 8 9 #include <linux/mm.h> 10 #include <linux/kexec.h> 11 #include <linux/string.h> 12 #include <linux/gfp.h> 13 #include <linux/reboot.h> 14 #include <linux/numa.h> 15 #include <linux/ftrace.h> 16 #include <linux/io.h> 17 #include <linux/suspend.h> 18 #include <linux/vmalloc.h> 19 #include <linux/efi.h> 20 #include <linux/cc_platform.h> 21 22 #include <asm/init.h> 23 #include <asm/tlbflush.h> 24 #include <asm/mmu_context.h> 25 #include <asm/io_apic.h> 26 #include <asm/debugreg.h> 27 #include <asm/kexec-bzimage64.h> 28 #include <asm/setup.h> 29 #include <asm/set_memory.h> 30 #include <asm/cpu.h> 31 #include <asm/efi.h> 32 33 #ifdef CONFIG_ACPI 34 /* 35 * Used while adding mapping for ACPI tables. 36 * Can be reused when other iomem regions need be mapped 37 */ 38 struct init_pgtable_data { 39 struct x86_mapping_info *info; 40 pgd_t *level4p; 41 }; 42 43 static int mem_region_callback(struct resource *res, void *arg) 44 { 45 struct init_pgtable_data *data = arg; 46 unsigned long mstart, mend; 47 48 mstart = res->start; 49 mend = mstart + resource_size(res) - 1; 50 51 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend); 52 } 53 54 static int 55 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) 56 { 57 struct init_pgtable_data data; 58 unsigned long flags; 59 int ret; 60 61 data.info = info; 62 data.level4p = level4p; 63 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 64 65 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, 66 &data, mem_region_callback); 67 if (ret && ret != -EINVAL) 68 return ret; 69 70 /* ACPI tables could be located in ACPI Non-volatile Storage region */ 71 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, 72 &data, mem_region_callback); 73 if (ret && ret != -EINVAL) 74 return ret; 75 76 return 0; 77 } 78 #else 79 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; } 80 #endif 81 82 #ifdef CONFIG_KEXEC_FILE 83 const struct kexec_file_ops * const kexec_file_loaders[] = { 84 &kexec_bzImage64_ops, 85 NULL 86 }; 87 #endif 88 89 static int 90 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p) 91 { 92 #ifdef CONFIG_EFI 93 unsigned long mstart, mend; 94 void *kaddr; 95 int ret; 96 97 if (!efi_enabled(EFI_BOOT)) 98 return 0; 99 100 mstart = (boot_params.efi_info.efi_systab | 101 ((u64)boot_params.efi_info.efi_systab_hi<<32)); 102 103 if (efi_enabled(EFI_64BIT)) 104 mend = mstart + sizeof(efi_system_table_64_t); 105 else 106 mend = mstart + sizeof(efi_system_table_32_t); 107 108 if (!mstart) 109 return 0; 110 111 ret = kernel_ident_mapping_init(info, level4p, mstart, mend); 112 if (ret) 113 return ret; 114 115 kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB); 116 if (!kaddr) { 117 pr_err("Could not map UEFI system table\n"); 118 return -ENOMEM; 119 } 120 121 mstart = efi_config_table; 122 123 if (efi_enabled(EFI_64BIT)) { 124 efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr; 125 126 mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables; 127 } else { 128 efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr; 129 130 mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables; 131 } 132 133 memunmap(kaddr); 134 135 return kernel_ident_mapping_init(info, level4p, mstart, mend); 136 #endif 137 return 0; 138 } 139 140 static void free_transition_pgtable(struct kimage *image) 141 { 142 free_page((unsigned long)image->arch.p4d); 143 image->arch.p4d = NULL; 144 free_page((unsigned long)image->arch.pud); 145 image->arch.pud = NULL; 146 free_page((unsigned long)image->arch.pmd); 147 image->arch.pmd = NULL; 148 free_page((unsigned long)image->arch.pte); 149 image->arch.pte = NULL; 150 } 151 152 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 153 { 154 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC; 155 unsigned long vaddr, paddr; 156 int result = -ENOMEM; 157 p4d_t *p4d; 158 pud_t *pud; 159 pmd_t *pmd; 160 pte_t *pte; 161 162 vaddr = (unsigned long)relocate_kernel; 163 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 164 pgd += pgd_index(vaddr); 165 if (!pgd_present(*pgd)) { 166 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 167 if (!p4d) 168 goto err; 169 image->arch.p4d = p4d; 170 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 171 } 172 p4d = p4d_offset(pgd, vaddr); 173 if (!p4d_present(*p4d)) { 174 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 175 if (!pud) 176 goto err; 177 image->arch.pud = pud; 178 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 179 } 180 pud = pud_offset(p4d, vaddr); 181 if (!pud_present(*pud)) { 182 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 183 if (!pmd) 184 goto err; 185 image->arch.pmd = pmd; 186 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 187 } 188 pmd = pmd_offset(pud, vaddr); 189 if (!pmd_present(*pmd)) { 190 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 191 if (!pte) 192 goto err; 193 image->arch.pte = pte; 194 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 195 } 196 pte = pte_offset_kernel(pmd, vaddr); 197 198 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 199 prot = PAGE_KERNEL_EXEC; 200 201 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); 202 return 0; 203 err: 204 return result; 205 } 206 207 static void *alloc_pgt_page(void *data) 208 { 209 struct kimage *image = (struct kimage *)data; 210 struct page *page; 211 void *p = NULL; 212 213 page = kimage_alloc_control_pages(image, 0); 214 if (page) { 215 p = page_address(page); 216 clear_page(p); 217 } 218 219 return p; 220 } 221 222 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 223 { 224 struct x86_mapping_info info = { 225 .alloc_pgt_page = alloc_pgt_page, 226 .context = image, 227 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 228 .kernpg_flag = _KERNPG_TABLE_NOENC, 229 }; 230 unsigned long mstart, mend; 231 pgd_t *level4p; 232 int result; 233 int i; 234 235 level4p = (pgd_t *)__va(start_pgtable); 236 clear_page(level4p); 237 238 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 239 info.page_flag |= _PAGE_ENC; 240 info.kernpg_flag |= _PAGE_ENC; 241 } 242 243 if (direct_gbpages) 244 info.direct_gbpages = true; 245 246 for (i = 0; i < nr_pfn_mapped; i++) { 247 mstart = pfn_mapped[i].start << PAGE_SHIFT; 248 mend = pfn_mapped[i].end << PAGE_SHIFT; 249 250 result = kernel_ident_mapping_init(&info, 251 level4p, mstart, mend); 252 if (result) 253 return result; 254 } 255 256 /* 257 * segments's mem ranges could be outside 0 ~ max_pfn, 258 * for example when jump back to original kernel from kexeced kernel. 259 * or first kernel is booted with user mem map, and second kernel 260 * could be loaded out of that range. 261 */ 262 for (i = 0; i < image->nr_segments; i++) { 263 mstart = image->segment[i].mem; 264 mend = mstart + image->segment[i].memsz; 265 266 result = kernel_ident_mapping_init(&info, 267 level4p, mstart, mend); 268 269 if (result) 270 return result; 271 } 272 273 /* 274 * Prepare EFI systab and ACPI tables for kexec kernel since they are 275 * not covered by pfn_mapped. 276 */ 277 result = map_efi_systab(&info, level4p); 278 if (result) 279 return result; 280 281 result = map_acpi_tables(&info, level4p); 282 if (result) 283 return result; 284 285 return init_transition_pgtable(image, level4p); 286 } 287 288 static void load_segments(void) 289 { 290 __asm__ __volatile__ ( 291 "\tmovl %0,%%ds\n" 292 "\tmovl %0,%%es\n" 293 "\tmovl %0,%%ss\n" 294 "\tmovl %0,%%fs\n" 295 "\tmovl %0,%%gs\n" 296 : : "a" (__KERNEL_DS) : "memory" 297 ); 298 } 299 300 int machine_kexec_prepare(struct kimage *image) 301 { 302 unsigned long start_pgtable; 303 int result; 304 305 /* Calculate the offsets */ 306 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 307 308 /* Setup the identity mapped 64bit page table */ 309 result = init_pgtable(image, start_pgtable); 310 if (result) 311 return result; 312 313 return 0; 314 } 315 316 void machine_kexec_cleanup(struct kimage *image) 317 { 318 free_transition_pgtable(image); 319 } 320 321 /* 322 * Do not allocate memory (or fail in any way) in machine_kexec(). 323 * We are past the point of no return, committed to rebooting now. 324 */ 325 void machine_kexec(struct kimage *image) 326 { 327 unsigned long page_list[PAGES_NR]; 328 unsigned int host_mem_enc_active; 329 int save_ftrace_enabled; 330 void *control_page; 331 332 /* 333 * This must be done before load_segments() since if call depth tracking 334 * is used then GS must be valid to make any function calls. 335 */ 336 host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT); 337 338 #ifdef CONFIG_KEXEC_JUMP 339 if (image->preserve_context) 340 save_processor_state(); 341 #endif 342 343 save_ftrace_enabled = __ftrace_enabled_save(); 344 345 /* Interrupts aren't acceptable while we reboot */ 346 local_irq_disable(); 347 hw_breakpoint_disable(); 348 cet_disable(); 349 350 if (image->preserve_context) { 351 #ifdef CONFIG_X86_IO_APIC 352 /* 353 * We need to put APICs in legacy mode so that we can 354 * get timer interrupts in second kernel. kexec/kdump 355 * paths already have calls to restore_boot_irq_mode() 356 * in one form or other. kexec jump path also need one. 357 */ 358 clear_IO_APIC(); 359 restore_boot_irq_mode(); 360 #endif 361 } 362 363 control_page = page_address(image->control_code_page) + PAGE_SIZE; 364 __memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 365 366 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 367 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 368 page_list[PA_TABLE_PAGE] = 369 (unsigned long)__pa(page_address(image->control_code_page)); 370 371 if (image->type == KEXEC_TYPE_DEFAULT) 372 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 373 << PAGE_SHIFT); 374 375 /* 376 * The segment registers are funny things, they have both a 377 * visible and an invisible part. Whenever the visible part is 378 * set to a specific selector, the invisible part is loaded 379 * with from a table in memory. At no other time is the 380 * descriptor table in memory accessed. 381 * 382 * I take advantage of this here by force loading the 383 * segments, before I zap the gdt with an invalid value. 384 */ 385 load_segments(); 386 /* 387 * The gdt & idt are now invalid. 388 * If you want to load them you must set up your own idt & gdt. 389 */ 390 native_idt_invalidate(); 391 native_gdt_invalidate(); 392 393 /* now call it */ 394 image->start = relocate_kernel((unsigned long)image->head, 395 (unsigned long)page_list, 396 image->start, 397 image->preserve_context, 398 host_mem_enc_active); 399 400 #ifdef CONFIG_KEXEC_JUMP 401 if (image->preserve_context) 402 restore_processor_state(); 403 #endif 404 405 __ftrace_enabled_restore(save_ftrace_enabled); 406 } 407 408 /* arch-dependent functionality related to kexec file-based syscall */ 409 410 #ifdef CONFIG_KEXEC_FILE 411 /* 412 * Apply purgatory relocations. 413 * 414 * @pi: Purgatory to be relocated. 415 * @section: Section relocations applying to. 416 * @relsec: Section containing RELAs. 417 * @symtabsec: Corresponding symtab. 418 * 419 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 420 */ 421 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 422 Elf_Shdr *section, const Elf_Shdr *relsec, 423 const Elf_Shdr *symtabsec) 424 { 425 unsigned int i; 426 Elf64_Rela *rel; 427 Elf64_Sym *sym; 428 void *location; 429 unsigned long address, sec_base, value; 430 const char *strtab, *name, *shstrtab; 431 const Elf_Shdr *sechdrs; 432 433 /* String & section header string table */ 434 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 435 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 436 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 437 438 rel = (void *)pi->ehdr + relsec->sh_offset; 439 440 pr_debug("Applying relocate section %s to %u\n", 441 shstrtab + relsec->sh_name, relsec->sh_info); 442 443 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 444 445 /* 446 * rel[i].r_offset contains byte offset from beginning 447 * of section to the storage unit affected. 448 * 449 * This is location to update. This is temporary buffer 450 * where section is currently loaded. This will finally be 451 * loaded to a different address later, pointed to by 452 * ->sh_addr. kexec takes care of moving it 453 * (kexec_load_segment()). 454 */ 455 location = pi->purgatory_buf; 456 location += section->sh_offset; 457 location += rel[i].r_offset; 458 459 /* Final address of the location */ 460 address = section->sh_addr + rel[i].r_offset; 461 462 /* 463 * rel[i].r_info contains information about symbol table index 464 * w.r.t which relocation must be made and type of relocation 465 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 466 * these respectively. 467 */ 468 sym = (void *)pi->ehdr + symtabsec->sh_offset; 469 sym += ELF64_R_SYM(rel[i].r_info); 470 471 if (sym->st_name) 472 name = strtab + sym->st_name; 473 else 474 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 475 476 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 477 name, sym->st_info, sym->st_shndx, sym->st_value, 478 sym->st_size); 479 480 if (sym->st_shndx == SHN_UNDEF) { 481 pr_err("Undefined symbol: %s\n", name); 482 return -ENOEXEC; 483 } 484 485 if (sym->st_shndx == SHN_COMMON) { 486 pr_err("symbol '%s' in common section\n", name); 487 return -ENOEXEC; 488 } 489 490 if (sym->st_shndx == SHN_ABS) 491 sec_base = 0; 492 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 493 pr_err("Invalid section %d for symbol %s\n", 494 sym->st_shndx, name); 495 return -ENOEXEC; 496 } else 497 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 498 499 value = sym->st_value; 500 value += sec_base; 501 value += rel[i].r_addend; 502 503 switch (ELF64_R_TYPE(rel[i].r_info)) { 504 case R_X86_64_NONE: 505 break; 506 case R_X86_64_64: 507 *(u64 *)location = value; 508 break; 509 case R_X86_64_32: 510 *(u32 *)location = value; 511 if (value != *(u32 *)location) 512 goto overflow; 513 break; 514 case R_X86_64_32S: 515 *(s32 *)location = value; 516 if ((s64)value != *(s32 *)location) 517 goto overflow; 518 break; 519 case R_X86_64_PC32: 520 case R_X86_64_PLT32: 521 value -= (u64)address; 522 *(u32 *)location = value; 523 break; 524 default: 525 pr_err("Unknown rela relocation: %llu\n", 526 ELF64_R_TYPE(rel[i].r_info)); 527 return -ENOEXEC; 528 } 529 } 530 return 0; 531 532 overflow: 533 pr_err("Overflow in relocation type %d value 0x%lx\n", 534 (int)ELF64_R_TYPE(rel[i].r_info), value); 535 return -ENOEXEC; 536 } 537 538 int arch_kimage_file_post_load_cleanup(struct kimage *image) 539 { 540 vfree(image->elf_headers); 541 image->elf_headers = NULL; 542 image->elf_headers_sz = 0; 543 544 return kexec_image_post_load_cleanup_default(image); 545 } 546 #endif /* CONFIG_KEXEC_FILE */ 547 548 static int 549 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 550 { 551 struct page *page; 552 unsigned int nr_pages; 553 554 /* 555 * For physical range: [start, end]. We must skip the unassigned 556 * crashk resource with zero-valued "end" member. 557 */ 558 if (!end || start > end) 559 return 0; 560 561 page = pfn_to_page(start >> PAGE_SHIFT); 562 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 563 if (protect) 564 return set_pages_ro(page, nr_pages); 565 else 566 return set_pages_rw(page, nr_pages); 567 } 568 569 static void kexec_mark_crashkres(bool protect) 570 { 571 unsigned long control; 572 573 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 574 575 /* Don't touch the control code page used in crash_kexec().*/ 576 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 577 /* Control code page is located in the 2nd page. */ 578 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 579 control += KEXEC_CONTROL_PAGE_SIZE; 580 kexec_mark_range(control, crashk_res.end, protect); 581 } 582 583 void arch_kexec_protect_crashkres(void) 584 { 585 kexec_mark_crashkres(true); 586 } 587 588 void arch_kexec_unprotect_crashkres(void) 589 { 590 kexec_mark_crashkres(false); 591 } 592 593 /* 594 * During a traditional boot under SME, SME will encrypt the kernel, 595 * so the SME kexec kernel also needs to be un-encrypted in order to 596 * replicate a normal SME boot. 597 * 598 * During a traditional boot under SEV, the kernel has already been 599 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in 600 * order to replicate a normal SEV boot. 601 */ 602 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 603 { 604 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 605 return 0; 606 607 /* 608 * If host memory encryption is active we need to be sure that kexec 609 * pages are not encrypted because when we boot to the new kernel the 610 * pages won't be accessed encrypted (initially). 611 */ 612 return set_memory_decrypted((unsigned long)vaddr, pages); 613 } 614 615 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 616 { 617 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 618 return; 619 620 /* 621 * If host memory encryption is active we need to reset the pages back 622 * to being an encrypted mapping before freeing them. 623 */ 624 set_memory_encrypted((unsigned long)vaddr, pages); 625 } 626