1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/reboot.h>
13 #include <linux/numa.h>
14 #include <linux/ftrace.h>
15 #include <linux/io.h>
16 #include <linux/suspend.h>
17 
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 #include <asm/mmu_context.h>
21 
22 static int init_one_level2_page(struct kimage *image, pgd_t *pgd,
23 				unsigned long addr)
24 {
25 	pud_t *pud;
26 	pmd_t *pmd;
27 	struct page *page;
28 	int result = -ENOMEM;
29 
30 	addr &= PMD_MASK;
31 	pgd += pgd_index(addr);
32 	if (!pgd_present(*pgd)) {
33 		page = kimage_alloc_control_pages(image, 0);
34 		if (!page)
35 			goto out;
36 		pud = (pud_t *)page_address(page);
37 		memset(pud, 0, PAGE_SIZE);
38 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
39 	}
40 	pud = pud_offset(pgd, addr);
41 	if (!pud_present(*pud)) {
42 		page = kimage_alloc_control_pages(image, 0);
43 		if (!page)
44 			goto out;
45 		pmd = (pmd_t *)page_address(page);
46 		memset(pmd, 0, PAGE_SIZE);
47 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
48 	}
49 	pmd = pmd_offset(pud, addr);
50 	if (!pmd_present(*pmd))
51 		set_pmd(pmd, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
52 	result = 0;
53 out:
54 	return result;
55 }
56 
57 static void init_level2_page(pmd_t *level2p, unsigned long addr)
58 {
59 	unsigned long end_addr;
60 
61 	addr &= PAGE_MASK;
62 	end_addr = addr + PUD_SIZE;
63 	while (addr < end_addr) {
64 		set_pmd(level2p++, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
65 		addr += PMD_SIZE;
66 	}
67 }
68 
69 static int init_level3_page(struct kimage *image, pud_t *level3p,
70 				unsigned long addr, unsigned long last_addr)
71 {
72 	unsigned long end_addr;
73 	int result;
74 
75 	result = 0;
76 	addr &= PAGE_MASK;
77 	end_addr = addr + PGDIR_SIZE;
78 	while ((addr < last_addr) && (addr < end_addr)) {
79 		struct page *page;
80 		pmd_t *level2p;
81 
82 		page = kimage_alloc_control_pages(image, 0);
83 		if (!page) {
84 			result = -ENOMEM;
85 			goto out;
86 		}
87 		level2p = (pmd_t *)page_address(page);
88 		init_level2_page(level2p, addr);
89 		set_pud(level3p++, __pud(__pa(level2p) | _KERNPG_TABLE));
90 		addr += PUD_SIZE;
91 	}
92 	/* clear the unused entries */
93 	while (addr < end_addr) {
94 		pud_clear(level3p++);
95 		addr += PUD_SIZE;
96 	}
97 out:
98 	return result;
99 }
100 
101 
102 static int init_level4_page(struct kimage *image, pgd_t *level4p,
103 				unsigned long addr, unsigned long last_addr)
104 {
105 	unsigned long end_addr;
106 	int result;
107 
108 	result = 0;
109 	addr &= PAGE_MASK;
110 	end_addr = addr + (PTRS_PER_PGD * PGDIR_SIZE);
111 	while ((addr < last_addr) && (addr < end_addr)) {
112 		struct page *page;
113 		pud_t *level3p;
114 
115 		page = kimage_alloc_control_pages(image, 0);
116 		if (!page) {
117 			result = -ENOMEM;
118 			goto out;
119 		}
120 		level3p = (pud_t *)page_address(page);
121 		result = init_level3_page(image, level3p, addr, last_addr);
122 		if (result)
123 			goto out;
124 		set_pgd(level4p++, __pgd(__pa(level3p) | _KERNPG_TABLE));
125 		addr += PGDIR_SIZE;
126 	}
127 	/* clear the unused entries */
128 	while (addr < end_addr) {
129 		pgd_clear(level4p++);
130 		addr += PGDIR_SIZE;
131 	}
132 out:
133 	return result;
134 }
135 
136 static void free_transition_pgtable(struct kimage *image)
137 {
138 	free_page((unsigned long)image->arch.pud);
139 	free_page((unsigned long)image->arch.pmd);
140 	free_page((unsigned long)image->arch.pte);
141 }
142 
143 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
144 {
145 	pud_t *pud;
146 	pmd_t *pmd;
147 	pte_t *pte;
148 	unsigned long vaddr, paddr;
149 	int result = -ENOMEM;
150 
151 	vaddr = (unsigned long)relocate_kernel;
152 	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
153 	pgd += pgd_index(vaddr);
154 	if (!pgd_present(*pgd)) {
155 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
156 		if (!pud)
157 			goto err;
158 		image->arch.pud = pud;
159 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
160 	}
161 	pud = pud_offset(pgd, vaddr);
162 	if (!pud_present(*pud)) {
163 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
164 		if (!pmd)
165 			goto err;
166 		image->arch.pmd = pmd;
167 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
168 	}
169 	pmd = pmd_offset(pud, vaddr);
170 	if (!pmd_present(*pmd)) {
171 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
172 		if (!pte)
173 			goto err;
174 		image->arch.pte = pte;
175 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
176 	}
177 	pte = pte_offset_kernel(pmd, vaddr);
178 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
179 	return 0;
180 err:
181 	free_transition_pgtable(image);
182 	return result;
183 }
184 
185 
186 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
187 {
188 	pgd_t *level4p;
189 	int result;
190 	level4p = (pgd_t *)__va(start_pgtable);
191 	result = init_level4_page(image, level4p, 0, max_pfn << PAGE_SHIFT);
192 	if (result)
193 		return result;
194 	/*
195 	 * image->start may be outside 0 ~ max_pfn, for example when
196 	 * jump back to original kernel from kexeced kernel
197 	 */
198 	result = init_one_level2_page(image, level4p, image->start);
199 	if (result)
200 		return result;
201 	return init_transition_pgtable(image, level4p);
202 }
203 
204 static void set_idt(void *newidt, u16 limit)
205 {
206 	struct desc_ptr curidt;
207 
208 	/* x86-64 supports unaliged loads & stores */
209 	curidt.size    = limit;
210 	curidt.address = (unsigned long)newidt;
211 
212 	__asm__ __volatile__ (
213 		"lidtq %0\n"
214 		: : "m" (curidt)
215 		);
216 };
217 
218 
219 static void set_gdt(void *newgdt, u16 limit)
220 {
221 	struct desc_ptr curgdt;
222 
223 	/* x86-64 supports unaligned loads & stores */
224 	curgdt.size    = limit;
225 	curgdt.address = (unsigned long)newgdt;
226 
227 	__asm__ __volatile__ (
228 		"lgdtq %0\n"
229 		: : "m" (curgdt)
230 		);
231 };
232 
233 static void load_segments(void)
234 {
235 	__asm__ __volatile__ (
236 		"\tmovl %0,%%ds\n"
237 		"\tmovl %0,%%es\n"
238 		"\tmovl %0,%%ss\n"
239 		"\tmovl %0,%%fs\n"
240 		"\tmovl %0,%%gs\n"
241 		: : "a" (__KERNEL_DS) : "memory"
242 		);
243 }
244 
245 int machine_kexec_prepare(struct kimage *image)
246 {
247 	unsigned long start_pgtable;
248 	int result;
249 
250 	/* Calculate the offsets */
251 	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
252 
253 	/* Setup the identity mapped 64bit page table */
254 	result = init_pgtable(image, start_pgtable);
255 	if (result)
256 		return result;
257 
258 	return 0;
259 }
260 
261 void machine_kexec_cleanup(struct kimage *image)
262 {
263 	free_transition_pgtable(image);
264 }
265 
266 /*
267  * Do not allocate memory (or fail in any way) in machine_kexec().
268  * We are past the point of no return, committed to rebooting now.
269  */
270 void machine_kexec(struct kimage *image)
271 {
272 	unsigned long page_list[PAGES_NR];
273 	void *control_page;
274 	int save_ftrace_enabled;
275 
276 #ifdef CONFIG_KEXEC_JUMP
277 	if (image->preserve_context)
278 		save_processor_state();
279 #endif
280 
281 	save_ftrace_enabled = __ftrace_enabled_save();
282 
283 	/* Interrupts aren't acceptable while we reboot */
284 	local_irq_disable();
285 
286 	if (image->preserve_context) {
287 #ifdef CONFIG_X86_IO_APIC
288 		/*
289 		 * We need to put APICs in legacy mode so that we can
290 		 * get timer interrupts in second kernel. kexec/kdump
291 		 * paths already have calls to disable_IO_APIC() in
292 		 * one form or other. kexec jump path also need
293 		 * one.
294 		 */
295 		disable_IO_APIC();
296 #endif
297 	}
298 
299 	control_page = page_address(image->control_code_page) + PAGE_SIZE;
300 	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
301 
302 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
303 	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
304 	page_list[PA_TABLE_PAGE] =
305 	  (unsigned long)__pa(page_address(image->control_code_page));
306 
307 	if (image->type == KEXEC_TYPE_DEFAULT)
308 		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
309 						<< PAGE_SHIFT);
310 
311 	/*
312 	 * The segment registers are funny things, they have both a
313 	 * visible and an invisible part.  Whenever the visible part is
314 	 * set to a specific selector, the invisible part is loaded
315 	 * with from a table in memory.  At no other time is the
316 	 * descriptor table in memory accessed.
317 	 *
318 	 * I take advantage of this here by force loading the
319 	 * segments, before I zap the gdt with an invalid value.
320 	 */
321 	load_segments();
322 	/*
323 	 * The gdt & idt are now invalid.
324 	 * If you want to load them you must set up your own idt & gdt.
325 	 */
326 	set_gdt(phys_to_virt(0), 0);
327 	set_idt(phys_to_virt(0), 0);
328 
329 	/* now call it */
330 	image->start = relocate_kernel((unsigned long)image->head,
331 				       (unsigned long)page_list,
332 				       image->start,
333 				       image->preserve_context);
334 
335 #ifdef CONFIG_KEXEC_JUMP
336 	if (image->preserve_context)
337 		restore_processor_state();
338 #endif
339 
340 	__ftrace_enabled_restore(save_ftrace_enabled);
341 }
342 
343 void arch_crash_save_vmcoreinfo(void)
344 {
345 	VMCOREINFO_SYMBOL(phys_base);
346 	VMCOREINFO_SYMBOL(init_level4_pgt);
347 
348 #ifdef CONFIG_NUMA
349 	VMCOREINFO_SYMBOL(node_data);
350 	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
351 #endif
352 }
353 
354