1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/reboot.h>
13 #include <linux/numa.h>
14 #include <linux/ftrace.h>
15 #include <linux/io.h>
16 #include <linux/suspend.h>
17 
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 #include <asm/mmu_context.h>
21 #include <asm/debugreg.h>
22 
23 static int init_one_level2_page(struct kimage *image, pgd_t *pgd,
24 				unsigned long addr)
25 {
26 	pud_t *pud;
27 	pmd_t *pmd;
28 	struct page *page;
29 	int result = -ENOMEM;
30 
31 	addr &= PMD_MASK;
32 	pgd += pgd_index(addr);
33 	if (!pgd_present(*pgd)) {
34 		page = kimage_alloc_control_pages(image, 0);
35 		if (!page)
36 			goto out;
37 		pud = (pud_t *)page_address(page);
38 		memset(pud, 0, PAGE_SIZE);
39 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
40 	}
41 	pud = pud_offset(pgd, addr);
42 	if (!pud_present(*pud)) {
43 		page = kimage_alloc_control_pages(image, 0);
44 		if (!page)
45 			goto out;
46 		pmd = (pmd_t *)page_address(page);
47 		memset(pmd, 0, PAGE_SIZE);
48 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
49 	}
50 	pmd = pmd_offset(pud, addr);
51 	if (!pmd_present(*pmd))
52 		set_pmd(pmd, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
53 	result = 0;
54 out:
55 	return result;
56 }
57 
58 static void init_level2_page(pmd_t *level2p, unsigned long addr)
59 {
60 	unsigned long end_addr;
61 
62 	addr &= PAGE_MASK;
63 	end_addr = addr + PUD_SIZE;
64 	while (addr < end_addr) {
65 		set_pmd(level2p++, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
66 		addr += PMD_SIZE;
67 	}
68 }
69 
70 static int init_level3_page(struct kimage *image, pud_t *level3p,
71 				unsigned long addr, unsigned long last_addr)
72 {
73 	unsigned long end_addr;
74 	int result;
75 
76 	result = 0;
77 	addr &= PAGE_MASK;
78 	end_addr = addr + PGDIR_SIZE;
79 	while ((addr < last_addr) && (addr < end_addr)) {
80 		struct page *page;
81 		pmd_t *level2p;
82 
83 		page = kimage_alloc_control_pages(image, 0);
84 		if (!page) {
85 			result = -ENOMEM;
86 			goto out;
87 		}
88 		level2p = (pmd_t *)page_address(page);
89 		init_level2_page(level2p, addr);
90 		set_pud(level3p++, __pud(__pa(level2p) | _KERNPG_TABLE));
91 		addr += PUD_SIZE;
92 	}
93 	/* clear the unused entries */
94 	while (addr < end_addr) {
95 		pud_clear(level3p++);
96 		addr += PUD_SIZE;
97 	}
98 out:
99 	return result;
100 }
101 
102 
103 static int init_level4_page(struct kimage *image, pgd_t *level4p,
104 				unsigned long addr, unsigned long last_addr)
105 {
106 	unsigned long end_addr;
107 	int result;
108 
109 	result = 0;
110 	addr &= PAGE_MASK;
111 	end_addr = addr + (PTRS_PER_PGD * PGDIR_SIZE);
112 	while ((addr < last_addr) && (addr < end_addr)) {
113 		struct page *page;
114 		pud_t *level3p;
115 
116 		page = kimage_alloc_control_pages(image, 0);
117 		if (!page) {
118 			result = -ENOMEM;
119 			goto out;
120 		}
121 		level3p = (pud_t *)page_address(page);
122 		result = init_level3_page(image, level3p, addr, last_addr);
123 		if (result)
124 			goto out;
125 		set_pgd(level4p++, __pgd(__pa(level3p) | _KERNPG_TABLE));
126 		addr += PGDIR_SIZE;
127 	}
128 	/* clear the unused entries */
129 	while (addr < end_addr) {
130 		pgd_clear(level4p++);
131 		addr += PGDIR_SIZE;
132 	}
133 out:
134 	return result;
135 }
136 
137 static void free_transition_pgtable(struct kimage *image)
138 {
139 	free_page((unsigned long)image->arch.pud);
140 	free_page((unsigned long)image->arch.pmd);
141 	free_page((unsigned long)image->arch.pte);
142 }
143 
144 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
145 {
146 	pud_t *pud;
147 	pmd_t *pmd;
148 	pte_t *pte;
149 	unsigned long vaddr, paddr;
150 	int result = -ENOMEM;
151 
152 	vaddr = (unsigned long)relocate_kernel;
153 	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
154 	pgd += pgd_index(vaddr);
155 	if (!pgd_present(*pgd)) {
156 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
157 		if (!pud)
158 			goto err;
159 		image->arch.pud = pud;
160 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
161 	}
162 	pud = pud_offset(pgd, vaddr);
163 	if (!pud_present(*pud)) {
164 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
165 		if (!pmd)
166 			goto err;
167 		image->arch.pmd = pmd;
168 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
169 	}
170 	pmd = pmd_offset(pud, vaddr);
171 	if (!pmd_present(*pmd)) {
172 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
173 		if (!pte)
174 			goto err;
175 		image->arch.pte = pte;
176 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
177 	}
178 	pte = pte_offset_kernel(pmd, vaddr);
179 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
180 	return 0;
181 err:
182 	free_transition_pgtable(image);
183 	return result;
184 }
185 
186 
187 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
188 {
189 	pgd_t *level4p;
190 	int result;
191 	level4p = (pgd_t *)__va(start_pgtable);
192 	result = init_level4_page(image, level4p, 0, max_pfn << PAGE_SHIFT);
193 	if (result)
194 		return result;
195 	/*
196 	 * image->start may be outside 0 ~ max_pfn, for example when
197 	 * jump back to original kernel from kexeced kernel
198 	 */
199 	result = init_one_level2_page(image, level4p, image->start);
200 	if (result)
201 		return result;
202 	return init_transition_pgtable(image, level4p);
203 }
204 
205 static void set_idt(void *newidt, u16 limit)
206 {
207 	struct desc_ptr curidt;
208 
209 	/* x86-64 supports unaliged loads & stores */
210 	curidt.size    = limit;
211 	curidt.address = (unsigned long)newidt;
212 
213 	__asm__ __volatile__ (
214 		"lidtq %0\n"
215 		: : "m" (curidt)
216 		);
217 };
218 
219 
220 static void set_gdt(void *newgdt, u16 limit)
221 {
222 	struct desc_ptr curgdt;
223 
224 	/* x86-64 supports unaligned loads & stores */
225 	curgdt.size    = limit;
226 	curgdt.address = (unsigned long)newgdt;
227 
228 	__asm__ __volatile__ (
229 		"lgdtq %0\n"
230 		: : "m" (curgdt)
231 		);
232 };
233 
234 static void load_segments(void)
235 {
236 	__asm__ __volatile__ (
237 		"\tmovl %0,%%ds\n"
238 		"\tmovl %0,%%es\n"
239 		"\tmovl %0,%%ss\n"
240 		"\tmovl %0,%%fs\n"
241 		"\tmovl %0,%%gs\n"
242 		: : "a" (__KERNEL_DS) : "memory"
243 		);
244 }
245 
246 int machine_kexec_prepare(struct kimage *image)
247 {
248 	unsigned long start_pgtable;
249 	int result;
250 
251 	/* Calculate the offsets */
252 	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
253 
254 	/* Setup the identity mapped 64bit page table */
255 	result = init_pgtable(image, start_pgtable);
256 	if (result)
257 		return result;
258 
259 	return 0;
260 }
261 
262 void machine_kexec_cleanup(struct kimage *image)
263 {
264 	free_transition_pgtable(image);
265 }
266 
267 /*
268  * Do not allocate memory (or fail in any way) in machine_kexec().
269  * We are past the point of no return, committed to rebooting now.
270  */
271 void machine_kexec(struct kimage *image)
272 {
273 	unsigned long page_list[PAGES_NR];
274 	void *control_page;
275 	int save_ftrace_enabled;
276 
277 #ifdef CONFIG_KEXEC_JUMP
278 	if (image->preserve_context)
279 		save_processor_state();
280 #endif
281 
282 	save_ftrace_enabled = __ftrace_enabled_save();
283 
284 	/* Interrupts aren't acceptable while we reboot */
285 	local_irq_disable();
286 	hw_breakpoint_disable();
287 
288 	if (image->preserve_context) {
289 #ifdef CONFIG_X86_IO_APIC
290 		/*
291 		 * We need to put APICs in legacy mode so that we can
292 		 * get timer interrupts in second kernel. kexec/kdump
293 		 * paths already have calls to disable_IO_APIC() in
294 		 * one form or other. kexec jump path also need
295 		 * one.
296 		 */
297 		disable_IO_APIC();
298 #endif
299 	}
300 
301 	control_page = page_address(image->control_code_page) + PAGE_SIZE;
302 	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
303 
304 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
305 	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
306 	page_list[PA_TABLE_PAGE] =
307 	  (unsigned long)__pa(page_address(image->control_code_page));
308 
309 	if (image->type == KEXEC_TYPE_DEFAULT)
310 		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
311 						<< PAGE_SHIFT);
312 
313 	/*
314 	 * The segment registers are funny things, they have both a
315 	 * visible and an invisible part.  Whenever the visible part is
316 	 * set to a specific selector, the invisible part is loaded
317 	 * with from a table in memory.  At no other time is the
318 	 * descriptor table in memory accessed.
319 	 *
320 	 * I take advantage of this here by force loading the
321 	 * segments, before I zap the gdt with an invalid value.
322 	 */
323 	load_segments();
324 	/*
325 	 * The gdt & idt are now invalid.
326 	 * If you want to load them you must set up your own idt & gdt.
327 	 */
328 	set_gdt(phys_to_virt(0), 0);
329 	set_idt(phys_to_virt(0), 0);
330 
331 	/* now call it */
332 	image->start = relocate_kernel((unsigned long)image->head,
333 				       (unsigned long)page_list,
334 				       image->start,
335 				       image->preserve_context);
336 
337 #ifdef CONFIG_KEXEC_JUMP
338 	if (image->preserve_context)
339 		restore_processor_state();
340 #endif
341 
342 	__ftrace_enabled_restore(save_ftrace_enabled);
343 }
344 
345 void arch_crash_save_vmcoreinfo(void)
346 {
347 	VMCOREINFO_SYMBOL(phys_base);
348 	VMCOREINFO_SYMBOL(init_level4_pgt);
349 
350 #ifdef CONFIG_NUMA
351 	VMCOREINFO_SYMBOL(node_data);
352 	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
353 #endif
354 }
355 
356