1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 21 #include <asm/init.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 #include <asm/mmu_context.h> 25 #include <asm/debugreg.h> 26 #include <asm/kexec-bzimage64.h> 27 28 #ifdef CONFIG_KEXEC_FILE 29 static struct kexec_file_ops *kexec_file_loaders[] = { 30 &kexec_bzImage64_ops, 31 }; 32 #endif 33 34 static void free_transition_pgtable(struct kimage *image) 35 { 36 free_page((unsigned long)image->arch.pud); 37 free_page((unsigned long)image->arch.pmd); 38 free_page((unsigned long)image->arch.pte); 39 } 40 41 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 42 { 43 pud_t *pud; 44 pmd_t *pmd; 45 pte_t *pte; 46 unsigned long vaddr, paddr; 47 int result = -ENOMEM; 48 49 vaddr = (unsigned long)relocate_kernel; 50 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 51 pgd += pgd_index(vaddr); 52 if (!pgd_present(*pgd)) { 53 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 54 if (!pud) 55 goto err; 56 image->arch.pud = pud; 57 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); 58 } 59 pud = pud_offset(pgd, vaddr); 60 if (!pud_present(*pud)) { 61 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 62 if (!pmd) 63 goto err; 64 image->arch.pmd = pmd; 65 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 66 } 67 pmd = pmd_offset(pud, vaddr); 68 if (!pmd_present(*pmd)) { 69 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 70 if (!pte) 71 goto err; 72 image->arch.pte = pte; 73 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 74 } 75 pte = pte_offset_kernel(pmd, vaddr); 76 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC)); 77 return 0; 78 err: 79 free_transition_pgtable(image); 80 return result; 81 } 82 83 static void *alloc_pgt_page(void *data) 84 { 85 struct kimage *image = (struct kimage *)data; 86 struct page *page; 87 void *p = NULL; 88 89 page = kimage_alloc_control_pages(image, 0); 90 if (page) { 91 p = page_address(page); 92 clear_page(p); 93 } 94 95 return p; 96 } 97 98 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 99 { 100 struct x86_mapping_info info = { 101 .alloc_pgt_page = alloc_pgt_page, 102 .context = image, 103 .pmd_flag = __PAGE_KERNEL_LARGE_EXEC, 104 }; 105 unsigned long mstart, mend; 106 pgd_t *level4p; 107 int result; 108 int i; 109 110 level4p = (pgd_t *)__va(start_pgtable); 111 clear_page(level4p); 112 for (i = 0; i < nr_pfn_mapped; i++) { 113 mstart = pfn_mapped[i].start << PAGE_SHIFT; 114 mend = pfn_mapped[i].end << PAGE_SHIFT; 115 116 result = kernel_ident_mapping_init(&info, 117 level4p, mstart, mend); 118 if (result) 119 return result; 120 } 121 122 /* 123 * segments's mem ranges could be outside 0 ~ max_pfn, 124 * for example when jump back to original kernel from kexeced kernel. 125 * or first kernel is booted with user mem map, and second kernel 126 * could be loaded out of that range. 127 */ 128 for (i = 0; i < image->nr_segments; i++) { 129 mstart = image->segment[i].mem; 130 mend = mstart + image->segment[i].memsz; 131 132 result = kernel_ident_mapping_init(&info, 133 level4p, mstart, mend); 134 135 if (result) 136 return result; 137 } 138 139 return init_transition_pgtable(image, level4p); 140 } 141 142 static void set_idt(void *newidt, u16 limit) 143 { 144 struct desc_ptr curidt; 145 146 /* x86-64 supports unaliged loads & stores */ 147 curidt.size = limit; 148 curidt.address = (unsigned long)newidt; 149 150 __asm__ __volatile__ ( 151 "lidtq %0\n" 152 : : "m" (curidt) 153 ); 154 }; 155 156 157 static void set_gdt(void *newgdt, u16 limit) 158 { 159 struct desc_ptr curgdt; 160 161 /* x86-64 supports unaligned loads & stores */ 162 curgdt.size = limit; 163 curgdt.address = (unsigned long)newgdt; 164 165 __asm__ __volatile__ ( 166 "lgdtq %0\n" 167 : : "m" (curgdt) 168 ); 169 }; 170 171 static void load_segments(void) 172 { 173 __asm__ __volatile__ ( 174 "\tmovl %0,%%ds\n" 175 "\tmovl %0,%%es\n" 176 "\tmovl %0,%%ss\n" 177 "\tmovl %0,%%fs\n" 178 "\tmovl %0,%%gs\n" 179 : : "a" (__KERNEL_DS) : "memory" 180 ); 181 } 182 183 #ifdef CONFIG_KEXEC_FILE 184 /* Update purgatory as needed after various image segments have been prepared */ 185 static int arch_update_purgatory(struct kimage *image) 186 { 187 int ret = 0; 188 189 if (!image->file_mode) 190 return 0; 191 192 /* Setup copying of backup region */ 193 if (image->type == KEXEC_TYPE_CRASH) { 194 ret = kexec_purgatory_get_set_symbol(image, "backup_dest", 195 &image->arch.backup_load_addr, 196 sizeof(image->arch.backup_load_addr), 0); 197 if (ret) 198 return ret; 199 200 ret = kexec_purgatory_get_set_symbol(image, "backup_src", 201 &image->arch.backup_src_start, 202 sizeof(image->arch.backup_src_start), 0); 203 if (ret) 204 return ret; 205 206 ret = kexec_purgatory_get_set_symbol(image, "backup_sz", 207 &image->arch.backup_src_sz, 208 sizeof(image->arch.backup_src_sz), 0); 209 if (ret) 210 return ret; 211 } 212 213 return ret; 214 } 215 #else /* !CONFIG_KEXEC_FILE */ 216 static inline int arch_update_purgatory(struct kimage *image) 217 { 218 return 0; 219 } 220 #endif /* CONFIG_KEXEC_FILE */ 221 222 int machine_kexec_prepare(struct kimage *image) 223 { 224 unsigned long start_pgtable; 225 int result; 226 227 /* Calculate the offsets */ 228 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 229 230 /* Setup the identity mapped 64bit page table */ 231 result = init_pgtable(image, start_pgtable); 232 if (result) 233 return result; 234 235 /* update purgatory as needed */ 236 result = arch_update_purgatory(image); 237 if (result) 238 return result; 239 240 return 0; 241 } 242 243 void machine_kexec_cleanup(struct kimage *image) 244 { 245 free_transition_pgtable(image); 246 } 247 248 /* 249 * Do not allocate memory (or fail in any way) in machine_kexec(). 250 * We are past the point of no return, committed to rebooting now. 251 */ 252 void machine_kexec(struct kimage *image) 253 { 254 unsigned long page_list[PAGES_NR]; 255 void *control_page; 256 int save_ftrace_enabled; 257 258 #ifdef CONFIG_KEXEC_JUMP 259 if (image->preserve_context) 260 save_processor_state(); 261 #endif 262 263 save_ftrace_enabled = __ftrace_enabled_save(); 264 265 /* Interrupts aren't acceptable while we reboot */ 266 local_irq_disable(); 267 hw_breakpoint_disable(); 268 269 if (image->preserve_context) { 270 #ifdef CONFIG_X86_IO_APIC 271 /* 272 * We need to put APICs in legacy mode so that we can 273 * get timer interrupts in second kernel. kexec/kdump 274 * paths already have calls to disable_IO_APIC() in 275 * one form or other. kexec jump path also need 276 * one. 277 */ 278 disable_IO_APIC(); 279 #endif 280 } 281 282 control_page = page_address(image->control_code_page) + PAGE_SIZE; 283 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 284 285 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 286 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 287 page_list[PA_TABLE_PAGE] = 288 (unsigned long)__pa(page_address(image->control_code_page)); 289 290 if (image->type == KEXEC_TYPE_DEFAULT) 291 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 292 << PAGE_SHIFT); 293 294 /* 295 * The segment registers are funny things, they have both a 296 * visible and an invisible part. Whenever the visible part is 297 * set to a specific selector, the invisible part is loaded 298 * with from a table in memory. At no other time is the 299 * descriptor table in memory accessed. 300 * 301 * I take advantage of this here by force loading the 302 * segments, before I zap the gdt with an invalid value. 303 */ 304 load_segments(); 305 /* 306 * The gdt & idt are now invalid. 307 * If you want to load them you must set up your own idt & gdt. 308 */ 309 set_gdt(phys_to_virt(0), 0); 310 set_idt(phys_to_virt(0), 0); 311 312 /* now call it */ 313 image->start = relocate_kernel((unsigned long)image->head, 314 (unsigned long)page_list, 315 image->start, 316 image->preserve_context); 317 318 #ifdef CONFIG_KEXEC_JUMP 319 if (image->preserve_context) 320 restore_processor_state(); 321 #endif 322 323 __ftrace_enabled_restore(save_ftrace_enabled); 324 } 325 326 void arch_crash_save_vmcoreinfo(void) 327 { 328 VMCOREINFO_SYMBOL(phys_base); 329 VMCOREINFO_SYMBOL(init_level4_pgt); 330 331 #ifdef CONFIG_NUMA 332 VMCOREINFO_SYMBOL(node_data); 333 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 334 #endif 335 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 336 (unsigned long)&_text - __START_KERNEL); 337 } 338 339 /* arch-dependent functionality related to kexec file-based syscall */ 340 341 #ifdef CONFIG_KEXEC_FILE 342 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 343 unsigned long buf_len) 344 { 345 int i, ret = -ENOEXEC; 346 struct kexec_file_ops *fops; 347 348 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) { 349 fops = kexec_file_loaders[i]; 350 if (!fops || !fops->probe) 351 continue; 352 353 ret = fops->probe(buf, buf_len); 354 if (!ret) { 355 image->fops = fops; 356 return ret; 357 } 358 } 359 360 return ret; 361 } 362 363 void *arch_kexec_kernel_image_load(struct kimage *image) 364 { 365 vfree(image->arch.elf_headers); 366 image->arch.elf_headers = NULL; 367 368 if (!image->fops || !image->fops->load) 369 return ERR_PTR(-ENOEXEC); 370 371 return image->fops->load(image, image->kernel_buf, 372 image->kernel_buf_len, image->initrd_buf, 373 image->initrd_buf_len, image->cmdline_buf, 374 image->cmdline_buf_len); 375 } 376 377 int arch_kimage_file_post_load_cleanup(struct kimage *image) 378 { 379 if (!image->fops || !image->fops->cleanup) 380 return 0; 381 382 return image->fops->cleanup(image->image_loader_data); 383 } 384 385 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel, 386 unsigned long kernel_len) 387 { 388 if (!image->fops || !image->fops->verify_sig) { 389 pr_debug("kernel loader does not support signature verification."); 390 return -EKEYREJECTED; 391 } 392 393 return image->fops->verify_sig(kernel, kernel_len); 394 } 395 396 /* 397 * Apply purgatory relocations. 398 * 399 * ehdr: Pointer to elf headers 400 * sechdrs: Pointer to section headers. 401 * relsec: section index of SHT_RELA section. 402 * 403 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 404 */ 405 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr, 406 Elf64_Shdr *sechdrs, unsigned int relsec) 407 { 408 unsigned int i; 409 Elf64_Rela *rel; 410 Elf64_Sym *sym; 411 void *location; 412 Elf64_Shdr *section, *symtabsec; 413 unsigned long address, sec_base, value; 414 const char *strtab, *name, *shstrtab; 415 416 /* 417 * ->sh_offset has been modified to keep the pointer to section 418 * contents in memory 419 */ 420 rel = (void *)sechdrs[relsec].sh_offset; 421 422 /* Section to which relocations apply */ 423 section = &sechdrs[sechdrs[relsec].sh_info]; 424 425 pr_debug("Applying relocate section %u to %u\n", relsec, 426 sechdrs[relsec].sh_info); 427 428 /* Associated symbol table */ 429 symtabsec = &sechdrs[sechdrs[relsec].sh_link]; 430 431 /* String table */ 432 if (symtabsec->sh_link >= ehdr->e_shnum) { 433 /* Invalid strtab section number */ 434 pr_err("Invalid string table section index %d\n", 435 symtabsec->sh_link); 436 return -ENOEXEC; 437 } 438 439 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset; 440 441 /* section header string table */ 442 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset; 443 444 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 445 446 /* 447 * rel[i].r_offset contains byte offset from beginning 448 * of section to the storage unit affected. 449 * 450 * This is location to update (->sh_offset). This is temporary 451 * buffer where section is currently loaded. This will finally 452 * be loaded to a different address later, pointed to by 453 * ->sh_addr. kexec takes care of moving it 454 * (kexec_load_segment()). 455 */ 456 location = (void *)(section->sh_offset + rel[i].r_offset); 457 458 /* Final address of the location */ 459 address = section->sh_addr + rel[i].r_offset; 460 461 /* 462 * rel[i].r_info contains information about symbol table index 463 * w.r.t which relocation must be made and type of relocation 464 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 465 * these respectively. 466 */ 467 sym = (Elf64_Sym *)symtabsec->sh_offset + 468 ELF64_R_SYM(rel[i].r_info); 469 470 if (sym->st_name) 471 name = strtab + sym->st_name; 472 else 473 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 474 475 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 476 name, sym->st_info, sym->st_shndx, sym->st_value, 477 sym->st_size); 478 479 if (sym->st_shndx == SHN_UNDEF) { 480 pr_err("Undefined symbol: %s\n", name); 481 return -ENOEXEC; 482 } 483 484 if (sym->st_shndx == SHN_COMMON) { 485 pr_err("symbol '%s' in common section\n", name); 486 return -ENOEXEC; 487 } 488 489 if (sym->st_shndx == SHN_ABS) 490 sec_base = 0; 491 else if (sym->st_shndx >= ehdr->e_shnum) { 492 pr_err("Invalid section %d for symbol %s\n", 493 sym->st_shndx, name); 494 return -ENOEXEC; 495 } else 496 sec_base = sechdrs[sym->st_shndx].sh_addr; 497 498 value = sym->st_value; 499 value += sec_base; 500 value += rel[i].r_addend; 501 502 switch (ELF64_R_TYPE(rel[i].r_info)) { 503 case R_X86_64_NONE: 504 break; 505 case R_X86_64_64: 506 *(u64 *)location = value; 507 break; 508 case R_X86_64_32: 509 *(u32 *)location = value; 510 if (value != *(u32 *)location) 511 goto overflow; 512 break; 513 case R_X86_64_32S: 514 *(s32 *)location = value; 515 if ((s64)value != *(s32 *)location) 516 goto overflow; 517 break; 518 case R_X86_64_PC32: 519 value -= (u64)address; 520 *(u32 *)location = value; 521 break; 522 default: 523 pr_err("Unknown rela relocation: %llu\n", 524 ELF64_R_TYPE(rel[i].r_info)); 525 return -ENOEXEC; 526 } 527 } 528 return 0; 529 530 overflow: 531 pr_err("Overflow in relocation type %d value 0x%lx\n", 532 (int)ELF64_R_TYPE(rel[i].r_info), value); 533 return -ENOEXEC; 534 } 535 #endif /* CONFIG_KEXEC_FILE */ 536