1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * handle transition of Linux booting another kernel 4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) "kexec: " fmt 8 9 #include <linux/mm.h> 10 #include <linux/kexec.h> 11 #include <linux/string.h> 12 #include <linux/gfp.h> 13 #include <linux/reboot.h> 14 #include <linux/numa.h> 15 #include <linux/ftrace.h> 16 #include <linux/io.h> 17 #include <linux/suspend.h> 18 #include <linux/vmalloc.h> 19 #include <linux/efi.h> 20 #include <linux/cc_platform.h> 21 22 #include <asm/init.h> 23 #include <asm/tlbflush.h> 24 #include <asm/mmu_context.h> 25 #include <asm/io_apic.h> 26 #include <asm/debugreg.h> 27 #include <asm/kexec-bzimage64.h> 28 #include <asm/setup.h> 29 #include <asm/set_memory.h> 30 31 #ifdef CONFIG_ACPI 32 /* 33 * Used while adding mapping for ACPI tables. 34 * Can be reused when other iomem regions need be mapped 35 */ 36 struct init_pgtable_data { 37 struct x86_mapping_info *info; 38 pgd_t *level4p; 39 }; 40 41 static int mem_region_callback(struct resource *res, void *arg) 42 { 43 struct init_pgtable_data *data = arg; 44 unsigned long mstart, mend; 45 46 mstart = res->start; 47 mend = mstart + resource_size(res) - 1; 48 49 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend); 50 } 51 52 static int 53 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) 54 { 55 struct init_pgtable_data data; 56 unsigned long flags; 57 int ret; 58 59 data.info = info; 60 data.level4p = level4p; 61 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 62 63 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, 64 &data, mem_region_callback); 65 if (ret && ret != -EINVAL) 66 return ret; 67 68 /* ACPI tables could be located in ACPI Non-volatile Storage region */ 69 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, 70 &data, mem_region_callback); 71 if (ret && ret != -EINVAL) 72 return ret; 73 74 return 0; 75 } 76 #else 77 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; } 78 #endif 79 80 #ifdef CONFIG_KEXEC_FILE 81 const struct kexec_file_ops * const kexec_file_loaders[] = { 82 &kexec_bzImage64_ops, 83 NULL 84 }; 85 #endif 86 87 static int 88 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p) 89 { 90 #ifdef CONFIG_EFI 91 unsigned long mstart, mend; 92 93 if (!efi_enabled(EFI_BOOT)) 94 return 0; 95 96 mstart = (boot_params.efi_info.efi_systab | 97 ((u64)boot_params.efi_info.efi_systab_hi<<32)); 98 99 if (efi_enabled(EFI_64BIT)) 100 mend = mstart + sizeof(efi_system_table_64_t); 101 else 102 mend = mstart + sizeof(efi_system_table_32_t); 103 104 if (!mstart) 105 return 0; 106 107 return kernel_ident_mapping_init(info, level4p, mstart, mend); 108 #endif 109 return 0; 110 } 111 112 static void free_transition_pgtable(struct kimage *image) 113 { 114 free_page((unsigned long)image->arch.p4d); 115 image->arch.p4d = NULL; 116 free_page((unsigned long)image->arch.pud); 117 image->arch.pud = NULL; 118 free_page((unsigned long)image->arch.pmd); 119 image->arch.pmd = NULL; 120 free_page((unsigned long)image->arch.pte); 121 image->arch.pte = NULL; 122 } 123 124 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 125 { 126 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC; 127 unsigned long vaddr, paddr; 128 int result = -ENOMEM; 129 p4d_t *p4d; 130 pud_t *pud; 131 pmd_t *pmd; 132 pte_t *pte; 133 134 vaddr = (unsigned long)relocate_kernel; 135 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 136 pgd += pgd_index(vaddr); 137 if (!pgd_present(*pgd)) { 138 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 139 if (!p4d) 140 goto err; 141 image->arch.p4d = p4d; 142 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 143 } 144 p4d = p4d_offset(pgd, vaddr); 145 if (!p4d_present(*p4d)) { 146 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 147 if (!pud) 148 goto err; 149 image->arch.pud = pud; 150 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 151 } 152 pud = pud_offset(p4d, vaddr); 153 if (!pud_present(*pud)) { 154 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 155 if (!pmd) 156 goto err; 157 image->arch.pmd = pmd; 158 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 159 } 160 pmd = pmd_offset(pud, vaddr); 161 if (!pmd_present(*pmd)) { 162 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 163 if (!pte) 164 goto err; 165 image->arch.pte = pte; 166 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 167 } 168 pte = pte_offset_kernel(pmd, vaddr); 169 170 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 171 prot = PAGE_KERNEL_EXEC; 172 173 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); 174 return 0; 175 err: 176 return result; 177 } 178 179 static void *alloc_pgt_page(void *data) 180 { 181 struct kimage *image = (struct kimage *)data; 182 struct page *page; 183 void *p = NULL; 184 185 page = kimage_alloc_control_pages(image, 0); 186 if (page) { 187 p = page_address(page); 188 clear_page(p); 189 } 190 191 return p; 192 } 193 194 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 195 { 196 struct x86_mapping_info info = { 197 .alloc_pgt_page = alloc_pgt_page, 198 .context = image, 199 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 200 .kernpg_flag = _KERNPG_TABLE_NOENC, 201 }; 202 unsigned long mstart, mend; 203 pgd_t *level4p; 204 int result; 205 int i; 206 207 level4p = (pgd_t *)__va(start_pgtable); 208 clear_page(level4p); 209 210 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 211 info.page_flag |= _PAGE_ENC; 212 info.kernpg_flag |= _PAGE_ENC; 213 } 214 215 if (direct_gbpages) 216 info.direct_gbpages = true; 217 218 for (i = 0; i < nr_pfn_mapped; i++) { 219 mstart = pfn_mapped[i].start << PAGE_SHIFT; 220 mend = pfn_mapped[i].end << PAGE_SHIFT; 221 222 result = kernel_ident_mapping_init(&info, 223 level4p, mstart, mend); 224 if (result) 225 return result; 226 } 227 228 /* 229 * segments's mem ranges could be outside 0 ~ max_pfn, 230 * for example when jump back to original kernel from kexeced kernel. 231 * or first kernel is booted with user mem map, and second kernel 232 * could be loaded out of that range. 233 */ 234 for (i = 0; i < image->nr_segments; i++) { 235 mstart = image->segment[i].mem; 236 mend = mstart + image->segment[i].memsz; 237 238 result = kernel_ident_mapping_init(&info, 239 level4p, mstart, mend); 240 241 if (result) 242 return result; 243 } 244 245 /* 246 * Prepare EFI systab and ACPI tables for kexec kernel since they are 247 * not covered by pfn_mapped. 248 */ 249 result = map_efi_systab(&info, level4p); 250 if (result) 251 return result; 252 253 result = map_acpi_tables(&info, level4p); 254 if (result) 255 return result; 256 257 return init_transition_pgtable(image, level4p); 258 } 259 260 static void load_segments(void) 261 { 262 __asm__ __volatile__ ( 263 "\tmovl %0,%%ds\n" 264 "\tmovl %0,%%es\n" 265 "\tmovl %0,%%ss\n" 266 "\tmovl %0,%%fs\n" 267 "\tmovl %0,%%gs\n" 268 : : "a" (__KERNEL_DS) : "memory" 269 ); 270 } 271 272 int machine_kexec_prepare(struct kimage *image) 273 { 274 unsigned long start_pgtable; 275 int result; 276 277 /* Calculate the offsets */ 278 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 279 280 /* Setup the identity mapped 64bit page table */ 281 result = init_pgtable(image, start_pgtable); 282 if (result) 283 return result; 284 285 return 0; 286 } 287 288 void machine_kexec_cleanup(struct kimage *image) 289 { 290 free_transition_pgtable(image); 291 } 292 293 /* 294 * Do not allocate memory (or fail in any way) in machine_kexec(). 295 * We are past the point of no return, committed to rebooting now. 296 */ 297 void machine_kexec(struct kimage *image) 298 { 299 unsigned long page_list[PAGES_NR]; 300 void *control_page; 301 int save_ftrace_enabled; 302 303 #ifdef CONFIG_KEXEC_JUMP 304 if (image->preserve_context) 305 save_processor_state(); 306 #endif 307 308 save_ftrace_enabled = __ftrace_enabled_save(); 309 310 /* Interrupts aren't acceptable while we reboot */ 311 local_irq_disable(); 312 hw_breakpoint_disable(); 313 314 if (image->preserve_context) { 315 #ifdef CONFIG_X86_IO_APIC 316 /* 317 * We need to put APICs in legacy mode so that we can 318 * get timer interrupts in second kernel. kexec/kdump 319 * paths already have calls to restore_boot_irq_mode() 320 * in one form or other. kexec jump path also need one. 321 */ 322 clear_IO_APIC(); 323 restore_boot_irq_mode(); 324 #endif 325 } 326 327 control_page = page_address(image->control_code_page) + PAGE_SIZE; 328 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 329 330 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 331 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 332 page_list[PA_TABLE_PAGE] = 333 (unsigned long)__pa(page_address(image->control_code_page)); 334 335 if (image->type == KEXEC_TYPE_DEFAULT) 336 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 337 << PAGE_SHIFT); 338 339 /* 340 * The segment registers are funny things, they have both a 341 * visible and an invisible part. Whenever the visible part is 342 * set to a specific selector, the invisible part is loaded 343 * with from a table in memory. At no other time is the 344 * descriptor table in memory accessed. 345 * 346 * I take advantage of this here by force loading the 347 * segments, before I zap the gdt with an invalid value. 348 */ 349 load_segments(); 350 /* 351 * The gdt & idt are now invalid. 352 * If you want to load them you must set up your own idt & gdt. 353 */ 354 native_idt_invalidate(); 355 native_gdt_invalidate(); 356 357 /* now call it */ 358 image->start = relocate_kernel((unsigned long)image->head, 359 (unsigned long)page_list, 360 image->start, 361 image->preserve_context, 362 cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)); 363 364 #ifdef CONFIG_KEXEC_JUMP 365 if (image->preserve_context) 366 restore_processor_state(); 367 #endif 368 369 __ftrace_enabled_restore(save_ftrace_enabled); 370 } 371 372 /* arch-dependent functionality related to kexec file-based syscall */ 373 374 #ifdef CONFIG_KEXEC_FILE 375 void *arch_kexec_kernel_image_load(struct kimage *image) 376 { 377 vfree(image->elf_headers); 378 image->elf_headers = NULL; 379 380 if (!image->fops || !image->fops->load) 381 return ERR_PTR(-ENOEXEC); 382 383 return image->fops->load(image, image->kernel_buf, 384 image->kernel_buf_len, image->initrd_buf, 385 image->initrd_buf_len, image->cmdline_buf, 386 image->cmdline_buf_len); 387 } 388 389 /* 390 * Apply purgatory relocations. 391 * 392 * @pi: Purgatory to be relocated. 393 * @section: Section relocations applying to. 394 * @relsec: Section containing RELAs. 395 * @symtabsec: Corresponding symtab. 396 * 397 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 398 */ 399 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 400 Elf_Shdr *section, const Elf_Shdr *relsec, 401 const Elf_Shdr *symtabsec) 402 { 403 unsigned int i; 404 Elf64_Rela *rel; 405 Elf64_Sym *sym; 406 void *location; 407 unsigned long address, sec_base, value; 408 const char *strtab, *name, *shstrtab; 409 const Elf_Shdr *sechdrs; 410 411 /* String & section header string table */ 412 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 413 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 414 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 415 416 rel = (void *)pi->ehdr + relsec->sh_offset; 417 418 pr_debug("Applying relocate section %s to %u\n", 419 shstrtab + relsec->sh_name, relsec->sh_info); 420 421 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 422 423 /* 424 * rel[i].r_offset contains byte offset from beginning 425 * of section to the storage unit affected. 426 * 427 * This is location to update. This is temporary buffer 428 * where section is currently loaded. This will finally be 429 * loaded to a different address later, pointed to by 430 * ->sh_addr. kexec takes care of moving it 431 * (kexec_load_segment()). 432 */ 433 location = pi->purgatory_buf; 434 location += section->sh_offset; 435 location += rel[i].r_offset; 436 437 /* Final address of the location */ 438 address = section->sh_addr + rel[i].r_offset; 439 440 /* 441 * rel[i].r_info contains information about symbol table index 442 * w.r.t which relocation must be made and type of relocation 443 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 444 * these respectively. 445 */ 446 sym = (void *)pi->ehdr + symtabsec->sh_offset; 447 sym += ELF64_R_SYM(rel[i].r_info); 448 449 if (sym->st_name) 450 name = strtab + sym->st_name; 451 else 452 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 453 454 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 455 name, sym->st_info, sym->st_shndx, sym->st_value, 456 sym->st_size); 457 458 if (sym->st_shndx == SHN_UNDEF) { 459 pr_err("Undefined symbol: %s\n", name); 460 return -ENOEXEC; 461 } 462 463 if (sym->st_shndx == SHN_COMMON) { 464 pr_err("symbol '%s' in common section\n", name); 465 return -ENOEXEC; 466 } 467 468 if (sym->st_shndx == SHN_ABS) 469 sec_base = 0; 470 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 471 pr_err("Invalid section %d for symbol %s\n", 472 sym->st_shndx, name); 473 return -ENOEXEC; 474 } else 475 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 476 477 value = sym->st_value; 478 value += sec_base; 479 value += rel[i].r_addend; 480 481 switch (ELF64_R_TYPE(rel[i].r_info)) { 482 case R_X86_64_NONE: 483 break; 484 case R_X86_64_64: 485 *(u64 *)location = value; 486 break; 487 case R_X86_64_32: 488 *(u32 *)location = value; 489 if (value != *(u32 *)location) 490 goto overflow; 491 break; 492 case R_X86_64_32S: 493 *(s32 *)location = value; 494 if ((s64)value != *(s32 *)location) 495 goto overflow; 496 break; 497 case R_X86_64_PC32: 498 case R_X86_64_PLT32: 499 value -= (u64)address; 500 *(u32 *)location = value; 501 break; 502 default: 503 pr_err("Unknown rela relocation: %llu\n", 504 ELF64_R_TYPE(rel[i].r_info)); 505 return -ENOEXEC; 506 } 507 } 508 return 0; 509 510 overflow: 511 pr_err("Overflow in relocation type %d value 0x%lx\n", 512 (int)ELF64_R_TYPE(rel[i].r_info), value); 513 return -ENOEXEC; 514 } 515 #endif /* CONFIG_KEXEC_FILE */ 516 517 static int 518 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 519 { 520 struct page *page; 521 unsigned int nr_pages; 522 523 /* 524 * For physical range: [start, end]. We must skip the unassigned 525 * crashk resource with zero-valued "end" member. 526 */ 527 if (!end || start > end) 528 return 0; 529 530 page = pfn_to_page(start >> PAGE_SHIFT); 531 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 532 if (protect) 533 return set_pages_ro(page, nr_pages); 534 else 535 return set_pages_rw(page, nr_pages); 536 } 537 538 static void kexec_mark_crashkres(bool protect) 539 { 540 unsigned long control; 541 542 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 543 544 /* Don't touch the control code page used in crash_kexec().*/ 545 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 546 /* Control code page is located in the 2nd page. */ 547 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 548 control += KEXEC_CONTROL_PAGE_SIZE; 549 kexec_mark_range(control, crashk_res.end, protect); 550 } 551 552 void arch_kexec_protect_crashkres(void) 553 { 554 kexec_mark_crashkres(true); 555 } 556 557 void arch_kexec_unprotect_crashkres(void) 558 { 559 kexec_mark_crashkres(false); 560 } 561 562 /* 563 * During a traditional boot under SME, SME will encrypt the kernel, 564 * so the SME kexec kernel also needs to be un-encrypted in order to 565 * replicate a normal SME boot. 566 * 567 * During a traditional boot under SEV, the kernel has already been 568 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in 569 * order to replicate a normal SEV boot. 570 */ 571 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 572 { 573 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 574 return 0; 575 576 /* 577 * If host memory encryption is active we need to be sure that kexec 578 * pages are not encrypted because when we boot to the new kernel the 579 * pages won't be accessed encrypted (initially). 580 */ 581 return set_memory_decrypted((unsigned long)vaddr, pages); 582 } 583 584 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 585 { 586 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) 587 return; 588 589 /* 590 * If host memory encryption is active we need to reset the pages back 591 * to being an encrypted mapping before freeing them. 592 */ 593 set_memory_encrypted((unsigned long)vaddr, pages); 594 } 595