1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 #include <linux/vmalloc.h> 21 22 #include <asm/init.h> 23 #include <asm/pgtable.h> 24 #include <asm/tlbflush.h> 25 #include <asm/mmu_context.h> 26 #include <asm/io_apic.h> 27 #include <asm/debugreg.h> 28 #include <asm/kexec-bzimage64.h> 29 #include <asm/setup.h> 30 #include <asm/set_memory.h> 31 32 #ifdef CONFIG_KEXEC_FILE 33 const struct kexec_file_ops * const kexec_file_loaders[] = { 34 &kexec_bzImage64_ops, 35 NULL 36 }; 37 #endif 38 39 static void free_transition_pgtable(struct kimage *image) 40 { 41 free_page((unsigned long)image->arch.p4d); 42 image->arch.p4d = NULL; 43 free_page((unsigned long)image->arch.pud); 44 image->arch.pud = NULL; 45 free_page((unsigned long)image->arch.pmd); 46 image->arch.pmd = NULL; 47 free_page((unsigned long)image->arch.pte); 48 image->arch.pte = NULL; 49 } 50 51 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 52 { 53 p4d_t *p4d; 54 pud_t *pud; 55 pmd_t *pmd; 56 pte_t *pte; 57 unsigned long vaddr, paddr; 58 int result = -ENOMEM; 59 60 vaddr = (unsigned long)relocate_kernel; 61 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 62 pgd += pgd_index(vaddr); 63 if (!pgd_present(*pgd)) { 64 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 65 if (!p4d) 66 goto err; 67 image->arch.p4d = p4d; 68 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 69 } 70 p4d = p4d_offset(pgd, vaddr); 71 if (!p4d_present(*p4d)) { 72 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 73 if (!pud) 74 goto err; 75 image->arch.pud = pud; 76 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 77 } 78 pud = pud_offset(p4d, vaddr); 79 if (!pud_present(*pud)) { 80 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 81 if (!pmd) 82 goto err; 83 image->arch.pmd = pmd; 84 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 85 } 86 pmd = pmd_offset(pud, vaddr); 87 if (!pmd_present(*pmd)) { 88 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 89 if (!pte) 90 goto err; 91 image->arch.pte = pte; 92 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 93 } 94 pte = pte_offset_kernel(pmd, vaddr); 95 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC)); 96 return 0; 97 err: 98 return result; 99 } 100 101 static void *alloc_pgt_page(void *data) 102 { 103 struct kimage *image = (struct kimage *)data; 104 struct page *page; 105 void *p = NULL; 106 107 page = kimage_alloc_control_pages(image, 0); 108 if (page) { 109 p = page_address(page); 110 clear_page(p); 111 } 112 113 return p; 114 } 115 116 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 117 { 118 struct x86_mapping_info info = { 119 .alloc_pgt_page = alloc_pgt_page, 120 .context = image, 121 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 122 .kernpg_flag = _KERNPG_TABLE_NOENC, 123 }; 124 unsigned long mstart, mend; 125 pgd_t *level4p; 126 int result; 127 int i; 128 129 level4p = (pgd_t *)__va(start_pgtable); 130 clear_page(level4p); 131 132 if (direct_gbpages) 133 info.direct_gbpages = true; 134 135 for (i = 0; i < nr_pfn_mapped; i++) { 136 mstart = pfn_mapped[i].start << PAGE_SHIFT; 137 mend = pfn_mapped[i].end << PAGE_SHIFT; 138 139 result = kernel_ident_mapping_init(&info, 140 level4p, mstart, mend); 141 if (result) 142 return result; 143 } 144 145 /* 146 * segments's mem ranges could be outside 0 ~ max_pfn, 147 * for example when jump back to original kernel from kexeced kernel. 148 * or first kernel is booted with user mem map, and second kernel 149 * could be loaded out of that range. 150 */ 151 for (i = 0; i < image->nr_segments; i++) { 152 mstart = image->segment[i].mem; 153 mend = mstart + image->segment[i].memsz; 154 155 result = kernel_ident_mapping_init(&info, 156 level4p, mstart, mend); 157 158 if (result) 159 return result; 160 } 161 162 return init_transition_pgtable(image, level4p); 163 } 164 165 static void set_idt(void *newidt, u16 limit) 166 { 167 struct desc_ptr curidt; 168 169 /* x86-64 supports unaliged loads & stores */ 170 curidt.size = limit; 171 curidt.address = (unsigned long)newidt; 172 173 __asm__ __volatile__ ( 174 "lidtq %0\n" 175 : : "m" (curidt) 176 ); 177 }; 178 179 180 static void set_gdt(void *newgdt, u16 limit) 181 { 182 struct desc_ptr curgdt; 183 184 /* x86-64 supports unaligned loads & stores */ 185 curgdt.size = limit; 186 curgdt.address = (unsigned long)newgdt; 187 188 __asm__ __volatile__ ( 189 "lgdtq %0\n" 190 : : "m" (curgdt) 191 ); 192 }; 193 194 static void load_segments(void) 195 { 196 __asm__ __volatile__ ( 197 "\tmovl %0,%%ds\n" 198 "\tmovl %0,%%es\n" 199 "\tmovl %0,%%ss\n" 200 "\tmovl %0,%%fs\n" 201 "\tmovl %0,%%gs\n" 202 : : "a" (__KERNEL_DS) : "memory" 203 ); 204 } 205 206 #ifdef CONFIG_KEXEC_FILE 207 /* Update purgatory as needed after various image segments have been prepared */ 208 static int arch_update_purgatory(struct kimage *image) 209 { 210 int ret = 0; 211 212 if (!image->file_mode) 213 return 0; 214 215 /* Setup copying of backup region */ 216 if (image->type == KEXEC_TYPE_CRASH) { 217 ret = kexec_purgatory_get_set_symbol(image, 218 "purgatory_backup_dest", 219 &image->arch.backup_load_addr, 220 sizeof(image->arch.backup_load_addr), 0); 221 if (ret) 222 return ret; 223 224 ret = kexec_purgatory_get_set_symbol(image, 225 "purgatory_backup_src", 226 &image->arch.backup_src_start, 227 sizeof(image->arch.backup_src_start), 0); 228 if (ret) 229 return ret; 230 231 ret = kexec_purgatory_get_set_symbol(image, 232 "purgatory_backup_sz", 233 &image->arch.backup_src_sz, 234 sizeof(image->arch.backup_src_sz), 0); 235 if (ret) 236 return ret; 237 } 238 239 return ret; 240 } 241 #else /* !CONFIG_KEXEC_FILE */ 242 static inline int arch_update_purgatory(struct kimage *image) 243 { 244 return 0; 245 } 246 #endif /* CONFIG_KEXEC_FILE */ 247 248 int machine_kexec_prepare(struct kimage *image) 249 { 250 unsigned long start_pgtable; 251 int result; 252 253 /* Calculate the offsets */ 254 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 255 256 /* Setup the identity mapped 64bit page table */ 257 result = init_pgtable(image, start_pgtable); 258 if (result) 259 return result; 260 261 /* update purgatory as needed */ 262 result = arch_update_purgatory(image); 263 if (result) 264 return result; 265 266 return 0; 267 } 268 269 void machine_kexec_cleanup(struct kimage *image) 270 { 271 free_transition_pgtable(image); 272 } 273 274 /* 275 * Do not allocate memory (or fail in any way) in machine_kexec(). 276 * We are past the point of no return, committed to rebooting now. 277 */ 278 void machine_kexec(struct kimage *image) 279 { 280 unsigned long page_list[PAGES_NR]; 281 void *control_page; 282 int save_ftrace_enabled; 283 284 #ifdef CONFIG_KEXEC_JUMP 285 if (image->preserve_context) 286 save_processor_state(); 287 #endif 288 289 save_ftrace_enabled = __ftrace_enabled_save(); 290 291 /* Interrupts aren't acceptable while we reboot */ 292 local_irq_disable(); 293 hw_breakpoint_disable(); 294 295 if (image->preserve_context) { 296 #ifdef CONFIG_X86_IO_APIC 297 /* 298 * We need to put APICs in legacy mode so that we can 299 * get timer interrupts in second kernel. kexec/kdump 300 * paths already have calls to restore_boot_irq_mode() 301 * in one form or other. kexec jump path also need one. 302 */ 303 clear_IO_APIC(); 304 restore_boot_irq_mode(); 305 #endif 306 } 307 308 control_page = page_address(image->control_code_page) + PAGE_SIZE; 309 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 310 311 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 312 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 313 page_list[PA_TABLE_PAGE] = 314 (unsigned long)__pa(page_address(image->control_code_page)); 315 316 if (image->type == KEXEC_TYPE_DEFAULT) 317 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 318 << PAGE_SHIFT); 319 320 /* 321 * The segment registers are funny things, they have both a 322 * visible and an invisible part. Whenever the visible part is 323 * set to a specific selector, the invisible part is loaded 324 * with from a table in memory. At no other time is the 325 * descriptor table in memory accessed. 326 * 327 * I take advantage of this here by force loading the 328 * segments, before I zap the gdt with an invalid value. 329 */ 330 load_segments(); 331 /* 332 * The gdt & idt are now invalid. 333 * If you want to load them you must set up your own idt & gdt. 334 */ 335 set_gdt(phys_to_virt(0), 0); 336 set_idt(phys_to_virt(0), 0); 337 338 /* now call it */ 339 image->start = relocate_kernel((unsigned long)image->head, 340 (unsigned long)page_list, 341 image->start, 342 image->preserve_context, 343 sme_active()); 344 345 #ifdef CONFIG_KEXEC_JUMP 346 if (image->preserve_context) 347 restore_processor_state(); 348 #endif 349 350 __ftrace_enabled_restore(save_ftrace_enabled); 351 } 352 353 void arch_crash_save_vmcoreinfo(void) 354 { 355 VMCOREINFO_NUMBER(phys_base); 356 VMCOREINFO_SYMBOL(init_top_pgt); 357 VMCOREINFO_NUMBER(pgtable_l5_enabled); 358 359 #ifdef CONFIG_NUMA 360 VMCOREINFO_SYMBOL(node_data); 361 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 362 #endif 363 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 364 kaslr_offset()); 365 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); 366 } 367 368 /* arch-dependent functionality related to kexec file-based syscall */ 369 370 #ifdef CONFIG_KEXEC_FILE 371 void *arch_kexec_kernel_image_load(struct kimage *image) 372 { 373 vfree(image->arch.elf_headers); 374 image->arch.elf_headers = NULL; 375 376 if (!image->fops || !image->fops->load) 377 return ERR_PTR(-ENOEXEC); 378 379 return image->fops->load(image, image->kernel_buf, 380 image->kernel_buf_len, image->initrd_buf, 381 image->initrd_buf_len, image->cmdline_buf, 382 image->cmdline_buf_len); 383 } 384 385 /* 386 * Apply purgatory relocations. 387 * 388 * @pi: Purgatory to be relocated. 389 * @section: Section relocations applying to. 390 * @relsec: Section containing RELAs. 391 * @symtabsec: Corresponding symtab. 392 * 393 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 394 */ 395 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 396 Elf_Shdr *section, const Elf_Shdr *relsec, 397 const Elf_Shdr *symtabsec) 398 { 399 unsigned int i; 400 Elf64_Rela *rel; 401 Elf64_Sym *sym; 402 void *location; 403 unsigned long address, sec_base, value; 404 const char *strtab, *name, *shstrtab; 405 const Elf_Shdr *sechdrs; 406 407 /* String & section header string table */ 408 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 409 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 410 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 411 412 rel = (void *)pi->ehdr + relsec->sh_offset; 413 414 pr_debug("Applying relocate section %s to %u\n", 415 shstrtab + relsec->sh_name, relsec->sh_info); 416 417 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 418 419 /* 420 * rel[i].r_offset contains byte offset from beginning 421 * of section to the storage unit affected. 422 * 423 * This is location to update. This is temporary buffer 424 * where section is currently loaded. This will finally be 425 * loaded to a different address later, pointed to by 426 * ->sh_addr. kexec takes care of moving it 427 * (kexec_load_segment()). 428 */ 429 location = pi->purgatory_buf; 430 location += section->sh_offset; 431 location += rel[i].r_offset; 432 433 /* Final address of the location */ 434 address = section->sh_addr + rel[i].r_offset; 435 436 /* 437 * rel[i].r_info contains information about symbol table index 438 * w.r.t which relocation must be made and type of relocation 439 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 440 * these respectively. 441 */ 442 sym = (void *)pi->ehdr + symtabsec->sh_offset; 443 sym += ELF64_R_SYM(rel[i].r_info); 444 445 if (sym->st_name) 446 name = strtab + sym->st_name; 447 else 448 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 449 450 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 451 name, sym->st_info, sym->st_shndx, sym->st_value, 452 sym->st_size); 453 454 if (sym->st_shndx == SHN_UNDEF) { 455 pr_err("Undefined symbol: %s\n", name); 456 return -ENOEXEC; 457 } 458 459 if (sym->st_shndx == SHN_COMMON) { 460 pr_err("symbol '%s' in common section\n", name); 461 return -ENOEXEC; 462 } 463 464 if (sym->st_shndx == SHN_ABS) 465 sec_base = 0; 466 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 467 pr_err("Invalid section %d for symbol %s\n", 468 sym->st_shndx, name); 469 return -ENOEXEC; 470 } else 471 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 472 473 value = sym->st_value; 474 value += sec_base; 475 value += rel[i].r_addend; 476 477 switch (ELF64_R_TYPE(rel[i].r_info)) { 478 case R_X86_64_NONE: 479 break; 480 case R_X86_64_64: 481 *(u64 *)location = value; 482 break; 483 case R_X86_64_32: 484 *(u32 *)location = value; 485 if (value != *(u32 *)location) 486 goto overflow; 487 break; 488 case R_X86_64_32S: 489 *(s32 *)location = value; 490 if ((s64)value != *(s32 *)location) 491 goto overflow; 492 break; 493 case R_X86_64_PC32: 494 case R_X86_64_PLT32: 495 value -= (u64)address; 496 *(u32 *)location = value; 497 break; 498 default: 499 pr_err("Unknown rela relocation: %llu\n", 500 ELF64_R_TYPE(rel[i].r_info)); 501 return -ENOEXEC; 502 } 503 } 504 return 0; 505 506 overflow: 507 pr_err("Overflow in relocation type %d value 0x%lx\n", 508 (int)ELF64_R_TYPE(rel[i].r_info), value); 509 return -ENOEXEC; 510 } 511 #endif /* CONFIG_KEXEC_FILE */ 512 513 static int 514 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 515 { 516 struct page *page; 517 unsigned int nr_pages; 518 519 /* 520 * For physical range: [start, end]. We must skip the unassigned 521 * crashk resource with zero-valued "end" member. 522 */ 523 if (!end || start > end) 524 return 0; 525 526 page = pfn_to_page(start >> PAGE_SHIFT); 527 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 528 if (protect) 529 return set_pages_ro(page, nr_pages); 530 else 531 return set_pages_rw(page, nr_pages); 532 } 533 534 static void kexec_mark_crashkres(bool protect) 535 { 536 unsigned long control; 537 538 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 539 540 /* Don't touch the control code page used in crash_kexec().*/ 541 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 542 /* Control code page is located in the 2nd page. */ 543 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 544 control += KEXEC_CONTROL_PAGE_SIZE; 545 kexec_mark_range(control, crashk_res.end, protect); 546 } 547 548 void arch_kexec_protect_crashkres(void) 549 { 550 kexec_mark_crashkres(true); 551 } 552 553 void arch_kexec_unprotect_crashkres(void) 554 { 555 kexec_mark_crashkres(false); 556 } 557 558 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 559 { 560 /* 561 * If SME is active we need to be sure that kexec pages are 562 * not encrypted because when we boot to the new kernel the 563 * pages won't be accessed encrypted (initially). 564 */ 565 return set_memory_decrypted((unsigned long)vaddr, pages); 566 } 567 568 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 569 { 570 /* 571 * If SME is active we need to reset the pages back to being 572 * an encrypted mapping before freeing them. 573 */ 574 set_memory_encrypted((unsigned long)vaddr, pages); 575 } 576