1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * handle transition of Linux booting another kernel 4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) "kexec: " fmt 8 9 #include <linux/mm.h> 10 #include <linux/kexec.h> 11 #include <linux/string.h> 12 #include <linux/gfp.h> 13 #include <linux/reboot.h> 14 #include <linux/numa.h> 15 #include <linux/ftrace.h> 16 #include <linux/io.h> 17 #include <linux/suspend.h> 18 #include <linux/vmalloc.h> 19 20 #include <asm/init.h> 21 #include <asm/pgtable.h> 22 #include <asm/tlbflush.h> 23 #include <asm/mmu_context.h> 24 #include <asm/io_apic.h> 25 #include <asm/debugreg.h> 26 #include <asm/kexec-bzimage64.h> 27 #include <asm/setup.h> 28 #include <asm/set_memory.h> 29 30 #ifdef CONFIG_KEXEC_FILE 31 const struct kexec_file_ops * const kexec_file_loaders[] = { 32 &kexec_bzImage64_ops, 33 NULL 34 }; 35 #endif 36 37 static void free_transition_pgtable(struct kimage *image) 38 { 39 free_page((unsigned long)image->arch.p4d); 40 image->arch.p4d = NULL; 41 free_page((unsigned long)image->arch.pud); 42 image->arch.pud = NULL; 43 free_page((unsigned long)image->arch.pmd); 44 image->arch.pmd = NULL; 45 free_page((unsigned long)image->arch.pte); 46 image->arch.pte = NULL; 47 } 48 49 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 50 { 51 p4d_t *p4d; 52 pud_t *pud; 53 pmd_t *pmd; 54 pte_t *pte; 55 unsigned long vaddr, paddr; 56 int result = -ENOMEM; 57 58 vaddr = (unsigned long)relocate_kernel; 59 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 60 pgd += pgd_index(vaddr); 61 if (!pgd_present(*pgd)) { 62 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 63 if (!p4d) 64 goto err; 65 image->arch.p4d = p4d; 66 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 67 } 68 p4d = p4d_offset(pgd, vaddr); 69 if (!p4d_present(*p4d)) { 70 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 71 if (!pud) 72 goto err; 73 image->arch.pud = pud; 74 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 75 } 76 pud = pud_offset(p4d, vaddr); 77 if (!pud_present(*pud)) { 78 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 79 if (!pmd) 80 goto err; 81 image->arch.pmd = pmd; 82 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 83 } 84 pmd = pmd_offset(pud, vaddr); 85 if (!pmd_present(*pmd)) { 86 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 87 if (!pte) 88 goto err; 89 image->arch.pte = pte; 90 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 91 } 92 pte = pte_offset_kernel(pmd, vaddr); 93 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC)); 94 return 0; 95 err: 96 return result; 97 } 98 99 static void *alloc_pgt_page(void *data) 100 { 101 struct kimage *image = (struct kimage *)data; 102 struct page *page; 103 void *p = NULL; 104 105 page = kimage_alloc_control_pages(image, 0); 106 if (page) { 107 p = page_address(page); 108 clear_page(p); 109 } 110 111 return p; 112 } 113 114 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 115 { 116 struct x86_mapping_info info = { 117 .alloc_pgt_page = alloc_pgt_page, 118 .context = image, 119 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 120 .kernpg_flag = _KERNPG_TABLE_NOENC, 121 }; 122 unsigned long mstart, mend; 123 pgd_t *level4p; 124 int result; 125 int i; 126 127 level4p = (pgd_t *)__va(start_pgtable); 128 clear_page(level4p); 129 130 if (direct_gbpages) 131 info.direct_gbpages = true; 132 133 for (i = 0; i < nr_pfn_mapped; i++) { 134 mstart = pfn_mapped[i].start << PAGE_SHIFT; 135 mend = pfn_mapped[i].end << PAGE_SHIFT; 136 137 result = kernel_ident_mapping_init(&info, 138 level4p, mstart, mend); 139 if (result) 140 return result; 141 } 142 143 /* 144 * segments's mem ranges could be outside 0 ~ max_pfn, 145 * for example when jump back to original kernel from kexeced kernel. 146 * or first kernel is booted with user mem map, and second kernel 147 * could be loaded out of that range. 148 */ 149 for (i = 0; i < image->nr_segments; i++) { 150 mstart = image->segment[i].mem; 151 mend = mstart + image->segment[i].memsz; 152 153 result = kernel_ident_mapping_init(&info, 154 level4p, mstart, mend); 155 156 if (result) 157 return result; 158 } 159 160 return init_transition_pgtable(image, level4p); 161 } 162 163 static void set_idt(void *newidt, u16 limit) 164 { 165 struct desc_ptr curidt; 166 167 /* x86-64 supports unaliged loads & stores */ 168 curidt.size = limit; 169 curidt.address = (unsigned long)newidt; 170 171 __asm__ __volatile__ ( 172 "lidtq %0\n" 173 : : "m" (curidt) 174 ); 175 }; 176 177 178 static void set_gdt(void *newgdt, u16 limit) 179 { 180 struct desc_ptr curgdt; 181 182 /* x86-64 supports unaligned loads & stores */ 183 curgdt.size = limit; 184 curgdt.address = (unsigned long)newgdt; 185 186 __asm__ __volatile__ ( 187 "lgdtq %0\n" 188 : : "m" (curgdt) 189 ); 190 }; 191 192 static void load_segments(void) 193 { 194 __asm__ __volatile__ ( 195 "\tmovl %0,%%ds\n" 196 "\tmovl %0,%%es\n" 197 "\tmovl %0,%%ss\n" 198 "\tmovl %0,%%fs\n" 199 "\tmovl %0,%%gs\n" 200 : : "a" (__KERNEL_DS) : "memory" 201 ); 202 } 203 204 #ifdef CONFIG_KEXEC_FILE 205 /* Update purgatory as needed after various image segments have been prepared */ 206 static int arch_update_purgatory(struct kimage *image) 207 { 208 int ret = 0; 209 210 if (!image->file_mode) 211 return 0; 212 213 /* Setup copying of backup region */ 214 if (image->type == KEXEC_TYPE_CRASH) { 215 ret = kexec_purgatory_get_set_symbol(image, 216 "purgatory_backup_dest", 217 &image->arch.backup_load_addr, 218 sizeof(image->arch.backup_load_addr), 0); 219 if (ret) 220 return ret; 221 222 ret = kexec_purgatory_get_set_symbol(image, 223 "purgatory_backup_src", 224 &image->arch.backup_src_start, 225 sizeof(image->arch.backup_src_start), 0); 226 if (ret) 227 return ret; 228 229 ret = kexec_purgatory_get_set_symbol(image, 230 "purgatory_backup_sz", 231 &image->arch.backup_src_sz, 232 sizeof(image->arch.backup_src_sz), 0); 233 if (ret) 234 return ret; 235 } 236 237 return ret; 238 } 239 #else /* !CONFIG_KEXEC_FILE */ 240 static inline int arch_update_purgatory(struct kimage *image) 241 { 242 return 0; 243 } 244 #endif /* CONFIG_KEXEC_FILE */ 245 246 int machine_kexec_prepare(struct kimage *image) 247 { 248 unsigned long start_pgtable; 249 int result; 250 251 /* Calculate the offsets */ 252 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 253 254 /* Setup the identity mapped 64bit page table */ 255 result = init_pgtable(image, start_pgtable); 256 if (result) 257 return result; 258 259 /* update purgatory as needed */ 260 result = arch_update_purgatory(image); 261 if (result) 262 return result; 263 264 return 0; 265 } 266 267 void machine_kexec_cleanup(struct kimage *image) 268 { 269 free_transition_pgtable(image); 270 } 271 272 /* 273 * Do not allocate memory (or fail in any way) in machine_kexec(). 274 * We are past the point of no return, committed to rebooting now. 275 */ 276 void machine_kexec(struct kimage *image) 277 { 278 unsigned long page_list[PAGES_NR]; 279 void *control_page; 280 int save_ftrace_enabled; 281 282 #ifdef CONFIG_KEXEC_JUMP 283 if (image->preserve_context) 284 save_processor_state(); 285 #endif 286 287 save_ftrace_enabled = __ftrace_enabled_save(); 288 289 /* Interrupts aren't acceptable while we reboot */ 290 local_irq_disable(); 291 hw_breakpoint_disable(); 292 293 if (image->preserve_context) { 294 #ifdef CONFIG_X86_IO_APIC 295 /* 296 * We need to put APICs in legacy mode so that we can 297 * get timer interrupts in second kernel. kexec/kdump 298 * paths already have calls to restore_boot_irq_mode() 299 * in one form or other. kexec jump path also need one. 300 */ 301 clear_IO_APIC(); 302 restore_boot_irq_mode(); 303 #endif 304 } 305 306 control_page = page_address(image->control_code_page) + PAGE_SIZE; 307 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 308 309 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 310 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 311 page_list[PA_TABLE_PAGE] = 312 (unsigned long)__pa(page_address(image->control_code_page)); 313 314 if (image->type == KEXEC_TYPE_DEFAULT) 315 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 316 << PAGE_SHIFT); 317 318 /* 319 * The segment registers are funny things, they have both a 320 * visible and an invisible part. Whenever the visible part is 321 * set to a specific selector, the invisible part is loaded 322 * with from a table in memory. At no other time is the 323 * descriptor table in memory accessed. 324 * 325 * I take advantage of this here by force loading the 326 * segments, before I zap the gdt with an invalid value. 327 */ 328 load_segments(); 329 /* 330 * The gdt & idt are now invalid. 331 * If you want to load them you must set up your own idt & gdt. 332 */ 333 set_gdt(phys_to_virt(0), 0); 334 set_idt(phys_to_virt(0), 0); 335 336 /* now call it */ 337 image->start = relocate_kernel((unsigned long)image->head, 338 (unsigned long)page_list, 339 image->start, 340 image->preserve_context, 341 sme_active()); 342 343 #ifdef CONFIG_KEXEC_JUMP 344 if (image->preserve_context) 345 restore_processor_state(); 346 #endif 347 348 __ftrace_enabled_restore(save_ftrace_enabled); 349 } 350 351 void arch_crash_save_vmcoreinfo(void) 352 { 353 u64 sme_mask = sme_me_mask; 354 355 VMCOREINFO_NUMBER(phys_base); 356 VMCOREINFO_SYMBOL(init_top_pgt); 357 vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n", 358 pgtable_l5_enabled()); 359 360 #ifdef CONFIG_NUMA 361 VMCOREINFO_SYMBOL(node_data); 362 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 363 #endif 364 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 365 kaslr_offset()); 366 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); 367 VMCOREINFO_NUMBER(sme_mask); 368 } 369 370 /* arch-dependent functionality related to kexec file-based syscall */ 371 372 #ifdef CONFIG_KEXEC_FILE 373 void *arch_kexec_kernel_image_load(struct kimage *image) 374 { 375 vfree(image->arch.elf_headers); 376 image->arch.elf_headers = NULL; 377 378 if (!image->fops || !image->fops->load) 379 return ERR_PTR(-ENOEXEC); 380 381 return image->fops->load(image, image->kernel_buf, 382 image->kernel_buf_len, image->initrd_buf, 383 image->initrd_buf_len, image->cmdline_buf, 384 image->cmdline_buf_len); 385 } 386 387 /* 388 * Apply purgatory relocations. 389 * 390 * @pi: Purgatory to be relocated. 391 * @section: Section relocations applying to. 392 * @relsec: Section containing RELAs. 393 * @symtabsec: Corresponding symtab. 394 * 395 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 396 */ 397 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 398 Elf_Shdr *section, const Elf_Shdr *relsec, 399 const Elf_Shdr *symtabsec) 400 { 401 unsigned int i; 402 Elf64_Rela *rel; 403 Elf64_Sym *sym; 404 void *location; 405 unsigned long address, sec_base, value; 406 const char *strtab, *name, *shstrtab; 407 const Elf_Shdr *sechdrs; 408 409 /* String & section header string table */ 410 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 411 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 412 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 413 414 rel = (void *)pi->ehdr + relsec->sh_offset; 415 416 pr_debug("Applying relocate section %s to %u\n", 417 shstrtab + relsec->sh_name, relsec->sh_info); 418 419 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 420 421 /* 422 * rel[i].r_offset contains byte offset from beginning 423 * of section to the storage unit affected. 424 * 425 * This is location to update. This is temporary buffer 426 * where section is currently loaded. This will finally be 427 * loaded to a different address later, pointed to by 428 * ->sh_addr. kexec takes care of moving it 429 * (kexec_load_segment()). 430 */ 431 location = pi->purgatory_buf; 432 location += section->sh_offset; 433 location += rel[i].r_offset; 434 435 /* Final address of the location */ 436 address = section->sh_addr + rel[i].r_offset; 437 438 /* 439 * rel[i].r_info contains information about symbol table index 440 * w.r.t which relocation must be made and type of relocation 441 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 442 * these respectively. 443 */ 444 sym = (void *)pi->ehdr + symtabsec->sh_offset; 445 sym += ELF64_R_SYM(rel[i].r_info); 446 447 if (sym->st_name) 448 name = strtab + sym->st_name; 449 else 450 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 451 452 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 453 name, sym->st_info, sym->st_shndx, sym->st_value, 454 sym->st_size); 455 456 if (sym->st_shndx == SHN_UNDEF) { 457 pr_err("Undefined symbol: %s\n", name); 458 return -ENOEXEC; 459 } 460 461 if (sym->st_shndx == SHN_COMMON) { 462 pr_err("symbol '%s' in common section\n", name); 463 return -ENOEXEC; 464 } 465 466 if (sym->st_shndx == SHN_ABS) 467 sec_base = 0; 468 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 469 pr_err("Invalid section %d for symbol %s\n", 470 sym->st_shndx, name); 471 return -ENOEXEC; 472 } else 473 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 474 475 value = sym->st_value; 476 value += sec_base; 477 value += rel[i].r_addend; 478 479 switch (ELF64_R_TYPE(rel[i].r_info)) { 480 case R_X86_64_NONE: 481 break; 482 case R_X86_64_64: 483 *(u64 *)location = value; 484 break; 485 case R_X86_64_32: 486 *(u32 *)location = value; 487 if (value != *(u32 *)location) 488 goto overflow; 489 break; 490 case R_X86_64_32S: 491 *(s32 *)location = value; 492 if ((s64)value != *(s32 *)location) 493 goto overflow; 494 break; 495 case R_X86_64_PC32: 496 case R_X86_64_PLT32: 497 value -= (u64)address; 498 *(u32 *)location = value; 499 break; 500 default: 501 pr_err("Unknown rela relocation: %llu\n", 502 ELF64_R_TYPE(rel[i].r_info)); 503 return -ENOEXEC; 504 } 505 } 506 return 0; 507 508 overflow: 509 pr_err("Overflow in relocation type %d value 0x%lx\n", 510 (int)ELF64_R_TYPE(rel[i].r_info), value); 511 return -ENOEXEC; 512 } 513 #endif /* CONFIG_KEXEC_FILE */ 514 515 static int 516 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 517 { 518 struct page *page; 519 unsigned int nr_pages; 520 521 /* 522 * For physical range: [start, end]. We must skip the unassigned 523 * crashk resource with zero-valued "end" member. 524 */ 525 if (!end || start > end) 526 return 0; 527 528 page = pfn_to_page(start >> PAGE_SHIFT); 529 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 530 if (protect) 531 return set_pages_ro(page, nr_pages); 532 else 533 return set_pages_rw(page, nr_pages); 534 } 535 536 static void kexec_mark_crashkres(bool protect) 537 { 538 unsigned long control; 539 540 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 541 542 /* Don't touch the control code page used in crash_kexec().*/ 543 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 544 /* Control code page is located in the 2nd page. */ 545 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 546 control += KEXEC_CONTROL_PAGE_SIZE; 547 kexec_mark_range(control, crashk_res.end, protect); 548 } 549 550 void arch_kexec_protect_crashkres(void) 551 { 552 kexec_mark_crashkres(true); 553 } 554 555 void arch_kexec_unprotect_crashkres(void) 556 { 557 kexec_mark_crashkres(false); 558 } 559 560 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 561 { 562 /* 563 * If SME is active we need to be sure that kexec pages are 564 * not encrypted because when we boot to the new kernel the 565 * pages won't be accessed encrypted (initially). 566 */ 567 return set_memory_decrypted((unsigned long)vaddr, pages); 568 } 569 570 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 571 { 572 /* 573 * If SME is active we need to reset the pages back to being 574 * an encrypted mapping before freeing them. 575 */ 576 set_memory_encrypted((unsigned long)vaddr, pages); 577 } 578