1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 21 #include <asm/init.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 #include <asm/mmu_context.h> 25 #include <asm/debugreg.h> 26 #include <asm/kexec-bzimage64.h> 27 28 static struct kexec_file_ops *kexec_file_loaders[] = { 29 &kexec_bzImage64_ops, 30 }; 31 32 static void free_transition_pgtable(struct kimage *image) 33 { 34 free_page((unsigned long)image->arch.pud); 35 free_page((unsigned long)image->arch.pmd); 36 free_page((unsigned long)image->arch.pte); 37 } 38 39 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 40 { 41 pud_t *pud; 42 pmd_t *pmd; 43 pte_t *pte; 44 unsigned long vaddr, paddr; 45 int result = -ENOMEM; 46 47 vaddr = (unsigned long)relocate_kernel; 48 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 49 pgd += pgd_index(vaddr); 50 if (!pgd_present(*pgd)) { 51 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 52 if (!pud) 53 goto err; 54 image->arch.pud = pud; 55 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); 56 } 57 pud = pud_offset(pgd, vaddr); 58 if (!pud_present(*pud)) { 59 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 60 if (!pmd) 61 goto err; 62 image->arch.pmd = pmd; 63 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 64 } 65 pmd = pmd_offset(pud, vaddr); 66 if (!pmd_present(*pmd)) { 67 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 68 if (!pte) 69 goto err; 70 image->arch.pte = pte; 71 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 72 } 73 pte = pte_offset_kernel(pmd, vaddr); 74 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC)); 75 return 0; 76 err: 77 free_transition_pgtable(image); 78 return result; 79 } 80 81 static void *alloc_pgt_page(void *data) 82 { 83 struct kimage *image = (struct kimage *)data; 84 struct page *page; 85 void *p = NULL; 86 87 page = kimage_alloc_control_pages(image, 0); 88 if (page) { 89 p = page_address(page); 90 clear_page(p); 91 } 92 93 return p; 94 } 95 96 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 97 { 98 struct x86_mapping_info info = { 99 .alloc_pgt_page = alloc_pgt_page, 100 .context = image, 101 .pmd_flag = __PAGE_KERNEL_LARGE_EXEC, 102 }; 103 unsigned long mstart, mend; 104 pgd_t *level4p; 105 int result; 106 int i; 107 108 level4p = (pgd_t *)__va(start_pgtable); 109 clear_page(level4p); 110 for (i = 0; i < nr_pfn_mapped; i++) { 111 mstart = pfn_mapped[i].start << PAGE_SHIFT; 112 mend = pfn_mapped[i].end << PAGE_SHIFT; 113 114 result = kernel_ident_mapping_init(&info, 115 level4p, mstart, mend); 116 if (result) 117 return result; 118 } 119 120 /* 121 * segments's mem ranges could be outside 0 ~ max_pfn, 122 * for example when jump back to original kernel from kexeced kernel. 123 * or first kernel is booted with user mem map, and second kernel 124 * could be loaded out of that range. 125 */ 126 for (i = 0; i < image->nr_segments; i++) { 127 mstart = image->segment[i].mem; 128 mend = mstart + image->segment[i].memsz; 129 130 result = kernel_ident_mapping_init(&info, 131 level4p, mstart, mend); 132 133 if (result) 134 return result; 135 } 136 137 return init_transition_pgtable(image, level4p); 138 } 139 140 static void set_idt(void *newidt, u16 limit) 141 { 142 struct desc_ptr curidt; 143 144 /* x86-64 supports unaliged loads & stores */ 145 curidt.size = limit; 146 curidt.address = (unsigned long)newidt; 147 148 __asm__ __volatile__ ( 149 "lidtq %0\n" 150 : : "m" (curidt) 151 ); 152 }; 153 154 155 static void set_gdt(void *newgdt, u16 limit) 156 { 157 struct desc_ptr curgdt; 158 159 /* x86-64 supports unaligned loads & stores */ 160 curgdt.size = limit; 161 curgdt.address = (unsigned long)newgdt; 162 163 __asm__ __volatile__ ( 164 "lgdtq %0\n" 165 : : "m" (curgdt) 166 ); 167 }; 168 169 static void load_segments(void) 170 { 171 __asm__ __volatile__ ( 172 "\tmovl %0,%%ds\n" 173 "\tmovl %0,%%es\n" 174 "\tmovl %0,%%ss\n" 175 "\tmovl %0,%%fs\n" 176 "\tmovl %0,%%gs\n" 177 : : "a" (__KERNEL_DS) : "memory" 178 ); 179 } 180 181 /* Update purgatory as needed after various image segments have been prepared */ 182 static int arch_update_purgatory(struct kimage *image) 183 { 184 int ret = 0; 185 186 if (!image->file_mode) 187 return 0; 188 189 /* Setup copying of backup region */ 190 if (image->type == KEXEC_TYPE_CRASH) { 191 ret = kexec_purgatory_get_set_symbol(image, "backup_dest", 192 &image->arch.backup_load_addr, 193 sizeof(image->arch.backup_load_addr), 0); 194 if (ret) 195 return ret; 196 197 ret = kexec_purgatory_get_set_symbol(image, "backup_src", 198 &image->arch.backup_src_start, 199 sizeof(image->arch.backup_src_start), 0); 200 if (ret) 201 return ret; 202 203 ret = kexec_purgatory_get_set_symbol(image, "backup_sz", 204 &image->arch.backup_src_sz, 205 sizeof(image->arch.backup_src_sz), 0); 206 if (ret) 207 return ret; 208 } 209 210 return ret; 211 } 212 213 int machine_kexec_prepare(struct kimage *image) 214 { 215 unsigned long start_pgtable; 216 int result; 217 218 /* Calculate the offsets */ 219 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 220 221 /* Setup the identity mapped 64bit page table */ 222 result = init_pgtable(image, start_pgtable); 223 if (result) 224 return result; 225 226 /* update purgatory as needed */ 227 result = arch_update_purgatory(image); 228 if (result) 229 return result; 230 231 return 0; 232 } 233 234 void machine_kexec_cleanup(struct kimage *image) 235 { 236 free_transition_pgtable(image); 237 } 238 239 /* 240 * Do not allocate memory (or fail in any way) in machine_kexec(). 241 * We are past the point of no return, committed to rebooting now. 242 */ 243 void machine_kexec(struct kimage *image) 244 { 245 unsigned long page_list[PAGES_NR]; 246 void *control_page; 247 int save_ftrace_enabled; 248 249 #ifdef CONFIG_KEXEC_JUMP 250 if (image->preserve_context) 251 save_processor_state(); 252 #endif 253 254 save_ftrace_enabled = __ftrace_enabled_save(); 255 256 /* Interrupts aren't acceptable while we reboot */ 257 local_irq_disable(); 258 hw_breakpoint_disable(); 259 260 if (image->preserve_context) { 261 #ifdef CONFIG_X86_IO_APIC 262 /* 263 * We need to put APICs in legacy mode so that we can 264 * get timer interrupts in second kernel. kexec/kdump 265 * paths already have calls to disable_IO_APIC() in 266 * one form or other. kexec jump path also need 267 * one. 268 */ 269 disable_IO_APIC(); 270 #endif 271 } 272 273 control_page = page_address(image->control_code_page) + PAGE_SIZE; 274 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 275 276 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 277 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 278 page_list[PA_TABLE_PAGE] = 279 (unsigned long)__pa(page_address(image->control_code_page)); 280 281 if (image->type == KEXEC_TYPE_DEFAULT) 282 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 283 << PAGE_SHIFT); 284 285 /* 286 * The segment registers are funny things, they have both a 287 * visible and an invisible part. Whenever the visible part is 288 * set to a specific selector, the invisible part is loaded 289 * with from a table in memory. At no other time is the 290 * descriptor table in memory accessed. 291 * 292 * I take advantage of this here by force loading the 293 * segments, before I zap the gdt with an invalid value. 294 */ 295 load_segments(); 296 /* 297 * The gdt & idt are now invalid. 298 * If you want to load them you must set up your own idt & gdt. 299 */ 300 set_gdt(phys_to_virt(0), 0); 301 set_idt(phys_to_virt(0), 0); 302 303 /* now call it */ 304 image->start = relocate_kernel((unsigned long)image->head, 305 (unsigned long)page_list, 306 image->start, 307 image->preserve_context); 308 309 #ifdef CONFIG_KEXEC_JUMP 310 if (image->preserve_context) 311 restore_processor_state(); 312 #endif 313 314 __ftrace_enabled_restore(save_ftrace_enabled); 315 } 316 317 void arch_crash_save_vmcoreinfo(void) 318 { 319 VMCOREINFO_SYMBOL(phys_base); 320 VMCOREINFO_SYMBOL(init_level4_pgt); 321 322 #ifdef CONFIG_NUMA 323 VMCOREINFO_SYMBOL(node_data); 324 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 325 #endif 326 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 327 (unsigned long)&_text - __START_KERNEL); 328 } 329 330 /* arch-dependent functionality related to kexec file-based syscall */ 331 332 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 333 unsigned long buf_len) 334 { 335 int i, ret = -ENOEXEC; 336 struct kexec_file_ops *fops; 337 338 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) { 339 fops = kexec_file_loaders[i]; 340 if (!fops || !fops->probe) 341 continue; 342 343 ret = fops->probe(buf, buf_len); 344 if (!ret) { 345 image->fops = fops; 346 return ret; 347 } 348 } 349 350 return ret; 351 } 352 353 void *arch_kexec_kernel_image_load(struct kimage *image) 354 { 355 vfree(image->arch.elf_headers); 356 image->arch.elf_headers = NULL; 357 358 if (!image->fops || !image->fops->load) 359 return ERR_PTR(-ENOEXEC); 360 361 return image->fops->load(image, image->kernel_buf, 362 image->kernel_buf_len, image->initrd_buf, 363 image->initrd_buf_len, image->cmdline_buf, 364 image->cmdline_buf_len); 365 } 366 367 int arch_kimage_file_post_load_cleanup(struct kimage *image) 368 { 369 if (!image->fops || !image->fops->cleanup) 370 return 0; 371 372 return image->fops->cleanup(image->image_loader_data); 373 } 374 375 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel, 376 unsigned long kernel_len) 377 { 378 if (!image->fops || !image->fops->verify_sig) { 379 pr_debug("kernel loader does not support signature verification."); 380 return -EKEYREJECTED; 381 } 382 383 return image->fops->verify_sig(kernel, kernel_len); 384 } 385 386 /* 387 * Apply purgatory relocations. 388 * 389 * ehdr: Pointer to elf headers 390 * sechdrs: Pointer to section headers. 391 * relsec: section index of SHT_RELA section. 392 * 393 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 394 */ 395 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr, 396 Elf64_Shdr *sechdrs, unsigned int relsec) 397 { 398 unsigned int i; 399 Elf64_Rela *rel; 400 Elf64_Sym *sym; 401 void *location; 402 Elf64_Shdr *section, *symtabsec; 403 unsigned long address, sec_base, value; 404 const char *strtab, *name, *shstrtab; 405 406 /* 407 * ->sh_offset has been modified to keep the pointer to section 408 * contents in memory 409 */ 410 rel = (void *)sechdrs[relsec].sh_offset; 411 412 /* Section to which relocations apply */ 413 section = &sechdrs[sechdrs[relsec].sh_info]; 414 415 pr_debug("Applying relocate section %u to %u\n", relsec, 416 sechdrs[relsec].sh_info); 417 418 /* Associated symbol table */ 419 symtabsec = &sechdrs[sechdrs[relsec].sh_link]; 420 421 /* String table */ 422 if (symtabsec->sh_link >= ehdr->e_shnum) { 423 /* Invalid strtab section number */ 424 pr_err("Invalid string table section index %d\n", 425 symtabsec->sh_link); 426 return -ENOEXEC; 427 } 428 429 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset; 430 431 /* section header string table */ 432 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset; 433 434 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 435 436 /* 437 * rel[i].r_offset contains byte offset from beginning 438 * of section to the storage unit affected. 439 * 440 * This is location to update (->sh_offset). This is temporary 441 * buffer where section is currently loaded. This will finally 442 * be loaded to a different address later, pointed to by 443 * ->sh_addr. kexec takes care of moving it 444 * (kexec_load_segment()). 445 */ 446 location = (void *)(section->sh_offset + rel[i].r_offset); 447 448 /* Final address of the location */ 449 address = section->sh_addr + rel[i].r_offset; 450 451 /* 452 * rel[i].r_info contains information about symbol table index 453 * w.r.t which relocation must be made and type of relocation 454 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 455 * these respectively. 456 */ 457 sym = (Elf64_Sym *)symtabsec->sh_offset + 458 ELF64_R_SYM(rel[i].r_info); 459 460 if (sym->st_name) 461 name = strtab + sym->st_name; 462 else 463 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 464 465 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 466 name, sym->st_info, sym->st_shndx, sym->st_value, 467 sym->st_size); 468 469 if (sym->st_shndx == SHN_UNDEF) { 470 pr_err("Undefined symbol: %s\n", name); 471 return -ENOEXEC; 472 } 473 474 if (sym->st_shndx == SHN_COMMON) { 475 pr_err("symbol '%s' in common section\n", name); 476 return -ENOEXEC; 477 } 478 479 if (sym->st_shndx == SHN_ABS) 480 sec_base = 0; 481 else if (sym->st_shndx >= ehdr->e_shnum) { 482 pr_err("Invalid section %d for symbol %s\n", 483 sym->st_shndx, name); 484 return -ENOEXEC; 485 } else 486 sec_base = sechdrs[sym->st_shndx].sh_addr; 487 488 value = sym->st_value; 489 value += sec_base; 490 value += rel[i].r_addend; 491 492 switch (ELF64_R_TYPE(rel[i].r_info)) { 493 case R_X86_64_NONE: 494 break; 495 case R_X86_64_64: 496 *(u64 *)location = value; 497 break; 498 case R_X86_64_32: 499 *(u32 *)location = value; 500 if (value != *(u32 *)location) 501 goto overflow; 502 break; 503 case R_X86_64_32S: 504 *(s32 *)location = value; 505 if ((s64)value != *(s32 *)location) 506 goto overflow; 507 break; 508 case R_X86_64_PC32: 509 value -= (u64)address; 510 *(u32 *)location = value; 511 break; 512 default: 513 pr_err("Unknown rela relocation: %llu\n", 514 ELF64_R_TYPE(rel[i].r_info)); 515 return -ENOEXEC; 516 } 517 } 518 return 0; 519 520 overflow: 521 pr_err("Overflow in relocation type %d value 0x%lx\n", 522 (int)ELF64_R_TYPE(rel[i].r_info), value); 523 return -ENOEXEC; 524 } 525