1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * handle transition of Linux booting another kernel 4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) "kexec: " fmt 8 9 #include <linux/mm.h> 10 #include <linux/kexec.h> 11 #include <linux/string.h> 12 #include <linux/gfp.h> 13 #include <linux/reboot.h> 14 #include <linux/numa.h> 15 #include <linux/ftrace.h> 16 #include <linux/io.h> 17 #include <linux/suspend.h> 18 #include <linux/vmalloc.h> 19 #include <linux/efi.h> 20 21 #include <asm/init.h> 22 #include <asm/tlbflush.h> 23 #include <asm/mmu_context.h> 24 #include <asm/io_apic.h> 25 #include <asm/debugreg.h> 26 #include <asm/kexec-bzimage64.h> 27 #include <asm/setup.h> 28 #include <asm/set_memory.h> 29 30 #ifdef CONFIG_ACPI 31 /* 32 * Used while adding mapping for ACPI tables. 33 * Can be reused when other iomem regions need be mapped 34 */ 35 struct init_pgtable_data { 36 struct x86_mapping_info *info; 37 pgd_t *level4p; 38 }; 39 40 static int mem_region_callback(struct resource *res, void *arg) 41 { 42 struct init_pgtable_data *data = arg; 43 unsigned long mstart, mend; 44 45 mstart = res->start; 46 mend = mstart + resource_size(res) - 1; 47 48 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend); 49 } 50 51 static int 52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) 53 { 54 struct init_pgtable_data data; 55 unsigned long flags; 56 int ret; 57 58 data.info = info; 59 data.level4p = level4p; 60 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 61 62 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, 63 &data, mem_region_callback); 64 if (ret && ret != -EINVAL) 65 return ret; 66 67 /* ACPI tables could be located in ACPI Non-volatile Storage region */ 68 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, 69 &data, mem_region_callback); 70 if (ret && ret != -EINVAL) 71 return ret; 72 73 return 0; 74 } 75 #else 76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; } 77 #endif 78 79 #ifdef CONFIG_KEXEC_FILE 80 const struct kexec_file_ops * const kexec_file_loaders[] = { 81 &kexec_bzImage64_ops, 82 NULL 83 }; 84 #endif 85 86 static int 87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p) 88 { 89 #ifdef CONFIG_EFI 90 unsigned long mstart, mend; 91 92 if (!efi_enabled(EFI_BOOT)) 93 return 0; 94 95 mstart = (boot_params.efi_info.efi_systab | 96 ((u64)boot_params.efi_info.efi_systab_hi<<32)); 97 98 if (efi_enabled(EFI_64BIT)) 99 mend = mstart + sizeof(efi_system_table_64_t); 100 else 101 mend = mstart + sizeof(efi_system_table_32_t); 102 103 if (!mstart) 104 return 0; 105 106 return kernel_ident_mapping_init(info, level4p, mstart, mend); 107 #endif 108 return 0; 109 } 110 111 static void free_transition_pgtable(struct kimage *image) 112 { 113 free_page((unsigned long)image->arch.p4d); 114 image->arch.p4d = NULL; 115 free_page((unsigned long)image->arch.pud); 116 image->arch.pud = NULL; 117 free_page((unsigned long)image->arch.pmd); 118 image->arch.pmd = NULL; 119 free_page((unsigned long)image->arch.pte); 120 image->arch.pte = NULL; 121 } 122 123 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 124 { 125 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC; 126 unsigned long vaddr, paddr; 127 int result = -ENOMEM; 128 p4d_t *p4d; 129 pud_t *pud; 130 pmd_t *pmd; 131 pte_t *pte; 132 133 vaddr = (unsigned long)relocate_kernel; 134 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 135 pgd += pgd_index(vaddr); 136 if (!pgd_present(*pgd)) { 137 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 138 if (!p4d) 139 goto err; 140 image->arch.p4d = p4d; 141 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 142 } 143 p4d = p4d_offset(pgd, vaddr); 144 if (!p4d_present(*p4d)) { 145 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 146 if (!pud) 147 goto err; 148 image->arch.pud = pud; 149 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 150 } 151 pud = pud_offset(p4d, vaddr); 152 if (!pud_present(*pud)) { 153 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 154 if (!pmd) 155 goto err; 156 image->arch.pmd = pmd; 157 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 158 } 159 pmd = pmd_offset(pud, vaddr); 160 if (!pmd_present(*pmd)) { 161 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 162 if (!pte) 163 goto err; 164 image->arch.pte = pte; 165 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 166 } 167 pte = pte_offset_kernel(pmd, vaddr); 168 169 if (sev_active()) 170 prot = PAGE_KERNEL_EXEC; 171 172 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); 173 return 0; 174 err: 175 return result; 176 } 177 178 static void *alloc_pgt_page(void *data) 179 { 180 struct kimage *image = (struct kimage *)data; 181 struct page *page; 182 void *p = NULL; 183 184 page = kimage_alloc_control_pages(image, 0); 185 if (page) { 186 p = page_address(page); 187 clear_page(p); 188 } 189 190 return p; 191 } 192 193 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 194 { 195 struct x86_mapping_info info = { 196 .alloc_pgt_page = alloc_pgt_page, 197 .context = image, 198 .page_flag = __PAGE_KERNEL_LARGE_EXEC, 199 .kernpg_flag = _KERNPG_TABLE_NOENC, 200 }; 201 unsigned long mstart, mend; 202 pgd_t *level4p; 203 int result; 204 int i; 205 206 level4p = (pgd_t *)__va(start_pgtable); 207 clear_page(level4p); 208 209 if (sev_active()) { 210 info.page_flag |= _PAGE_ENC; 211 info.kernpg_flag |= _PAGE_ENC; 212 } 213 214 if (direct_gbpages) 215 info.direct_gbpages = true; 216 217 for (i = 0; i < nr_pfn_mapped; i++) { 218 mstart = pfn_mapped[i].start << PAGE_SHIFT; 219 mend = pfn_mapped[i].end << PAGE_SHIFT; 220 221 result = kernel_ident_mapping_init(&info, 222 level4p, mstart, mend); 223 if (result) 224 return result; 225 } 226 227 /* 228 * segments's mem ranges could be outside 0 ~ max_pfn, 229 * for example when jump back to original kernel from kexeced kernel. 230 * or first kernel is booted with user mem map, and second kernel 231 * could be loaded out of that range. 232 */ 233 for (i = 0; i < image->nr_segments; i++) { 234 mstart = image->segment[i].mem; 235 mend = mstart + image->segment[i].memsz; 236 237 result = kernel_ident_mapping_init(&info, 238 level4p, mstart, mend); 239 240 if (result) 241 return result; 242 } 243 244 /* 245 * Prepare EFI systab and ACPI tables for kexec kernel since they are 246 * not covered by pfn_mapped. 247 */ 248 result = map_efi_systab(&info, level4p); 249 if (result) 250 return result; 251 252 result = map_acpi_tables(&info, level4p); 253 if (result) 254 return result; 255 256 return init_transition_pgtable(image, level4p); 257 } 258 259 static void load_segments(void) 260 { 261 __asm__ __volatile__ ( 262 "\tmovl %0,%%ds\n" 263 "\tmovl %0,%%es\n" 264 "\tmovl %0,%%ss\n" 265 "\tmovl %0,%%fs\n" 266 "\tmovl %0,%%gs\n" 267 : : "a" (__KERNEL_DS) : "memory" 268 ); 269 } 270 271 int machine_kexec_prepare(struct kimage *image) 272 { 273 unsigned long start_pgtable; 274 int result; 275 276 /* Calculate the offsets */ 277 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 278 279 /* Setup the identity mapped 64bit page table */ 280 result = init_pgtable(image, start_pgtable); 281 if (result) 282 return result; 283 284 return 0; 285 } 286 287 void machine_kexec_cleanup(struct kimage *image) 288 { 289 free_transition_pgtable(image); 290 } 291 292 /* 293 * Do not allocate memory (or fail in any way) in machine_kexec(). 294 * We are past the point of no return, committed to rebooting now. 295 */ 296 void machine_kexec(struct kimage *image) 297 { 298 unsigned long page_list[PAGES_NR]; 299 void *control_page; 300 int save_ftrace_enabled; 301 302 #ifdef CONFIG_KEXEC_JUMP 303 if (image->preserve_context) 304 save_processor_state(); 305 #endif 306 307 save_ftrace_enabled = __ftrace_enabled_save(); 308 309 /* Interrupts aren't acceptable while we reboot */ 310 local_irq_disable(); 311 hw_breakpoint_disable(); 312 313 if (image->preserve_context) { 314 #ifdef CONFIG_X86_IO_APIC 315 /* 316 * We need to put APICs in legacy mode so that we can 317 * get timer interrupts in second kernel. kexec/kdump 318 * paths already have calls to restore_boot_irq_mode() 319 * in one form or other. kexec jump path also need one. 320 */ 321 clear_IO_APIC(); 322 restore_boot_irq_mode(); 323 #endif 324 } 325 326 control_page = page_address(image->control_code_page) + PAGE_SIZE; 327 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 328 329 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 330 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 331 page_list[PA_TABLE_PAGE] = 332 (unsigned long)__pa(page_address(image->control_code_page)); 333 334 if (image->type == KEXEC_TYPE_DEFAULT) 335 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 336 << PAGE_SHIFT); 337 338 /* 339 * The segment registers are funny things, they have both a 340 * visible and an invisible part. Whenever the visible part is 341 * set to a specific selector, the invisible part is loaded 342 * with from a table in memory. At no other time is the 343 * descriptor table in memory accessed. 344 * 345 * I take advantage of this here by force loading the 346 * segments, before I zap the gdt with an invalid value. 347 */ 348 load_segments(); 349 /* 350 * The gdt & idt are now invalid. 351 * If you want to load them you must set up your own idt & gdt. 352 */ 353 native_idt_invalidate(); 354 native_gdt_invalidate(); 355 356 /* now call it */ 357 image->start = relocate_kernel((unsigned long)image->head, 358 (unsigned long)page_list, 359 image->start, 360 image->preserve_context, 361 sme_active()); 362 363 #ifdef CONFIG_KEXEC_JUMP 364 if (image->preserve_context) 365 restore_processor_state(); 366 #endif 367 368 __ftrace_enabled_restore(save_ftrace_enabled); 369 } 370 371 /* arch-dependent functionality related to kexec file-based syscall */ 372 373 #ifdef CONFIG_KEXEC_FILE 374 void *arch_kexec_kernel_image_load(struct kimage *image) 375 { 376 vfree(image->elf_headers); 377 image->elf_headers = NULL; 378 379 if (!image->fops || !image->fops->load) 380 return ERR_PTR(-ENOEXEC); 381 382 return image->fops->load(image, image->kernel_buf, 383 image->kernel_buf_len, image->initrd_buf, 384 image->initrd_buf_len, image->cmdline_buf, 385 image->cmdline_buf_len); 386 } 387 388 /* 389 * Apply purgatory relocations. 390 * 391 * @pi: Purgatory to be relocated. 392 * @section: Section relocations applying to. 393 * @relsec: Section containing RELAs. 394 * @symtabsec: Corresponding symtab. 395 * 396 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 397 */ 398 int arch_kexec_apply_relocations_add(struct purgatory_info *pi, 399 Elf_Shdr *section, const Elf_Shdr *relsec, 400 const Elf_Shdr *symtabsec) 401 { 402 unsigned int i; 403 Elf64_Rela *rel; 404 Elf64_Sym *sym; 405 void *location; 406 unsigned long address, sec_base, value; 407 const char *strtab, *name, *shstrtab; 408 const Elf_Shdr *sechdrs; 409 410 /* String & section header string table */ 411 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 412 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; 413 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; 414 415 rel = (void *)pi->ehdr + relsec->sh_offset; 416 417 pr_debug("Applying relocate section %s to %u\n", 418 shstrtab + relsec->sh_name, relsec->sh_info); 419 420 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { 421 422 /* 423 * rel[i].r_offset contains byte offset from beginning 424 * of section to the storage unit affected. 425 * 426 * This is location to update. This is temporary buffer 427 * where section is currently loaded. This will finally be 428 * loaded to a different address later, pointed to by 429 * ->sh_addr. kexec takes care of moving it 430 * (kexec_load_segment()). 431 */ 432 location = pi->purgatory_buf; 433 location += section->sh_offset; 434 location += rel[i].r_offset; 435 436 /* Final address of the location */ 437 address = section->sh_addr + rel[i].r_offset; 438 439 /* 440 * rel[i].r_info contains information about symbol table index 441 * w.r.t which relocation must be made and type of relocation 442 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 443 * these respectively. 444 */ 445 sym = (void *)pi->ehdr + symtabsec->sh_offset; 446 sym += ELF64_R_SYM(rel[i].r_info); 447 448 if (sym->st_name) 449 name = strtab + sym->st_name; 450 else 451 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 452 453 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 454 name, sym->st_info, sym->st_shndx, sym->st_value, 455 sym->st_size); 456 457 if (sym->st_shndx == SHN_UNDEF) { 458 pr_err("Undefined symbol: %s\n", name); 459 return -ENOEXEC; 460 } 461 462 if (sym->st_shndx == SHN_COMMON) { 463 pr_err("symbol '%s' in common section\n", name); 464 return -ENOEXEC; 465 } 466 467 if (sym->st_shndx == SHN_ABS) 468 sec_base = 0; 469 else if (sym->st_shndx >= pi->ehdr->e_shnum) { 470 pr_err("Invalid section %d for symbol %s\n", 471 sym->st_shndx, name); 472 return -ENOEXEC; 473 } else 474 sec_base = pi->sechdrs[sym->st_shndx].sh_addr; 475 476 value = sym->st_value; 477 value += sec_base; 478 value += rel[i].r_addend; 479 480 switch (ELF64_R_TYPE(rel[i].r_info)) { 481 case R_X86_64_NONE: 482 break; 483 case R_X86_64_64: 484 *(u64 *)location = value; 485 break; 486 case R_X86_64_32: 487 *(u32 *)location = value; 488 if (value != *(u32 *)location) 489 goto overflow; 490 break; 491 case R_X86_64_32S: 492 *(s32 *)location = value; 493 if ((s64)value != *(s32 *)location) 494 goto overflow; 495 break; 496 case R_X86_64_PC32: 497 case R_X86_64_PLT32: 498 value -= (u64)address; 499 *(u32 *)location = value; 500 break; 501 default: 502 pr_err("Unknown rela relocation: %llu\n", 503 ELF64_R_TYPE(rel[i].r_info)); 504 return -ENOEXEC; 505 } 506 } 507 return 0; 508 509 overflow: 510 pr_err("Overflow in relocation type %d value 0x%lx\n", 511 (int)ELF64_R_TYPE(rel[i].r_info), value); 512 return -ENOEXEC; 513 } 514 #endif /* CONFIG_KEXEC_FILE */ 515 516 static int 517 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 518 { 519 struct page *page; 520 unsigned int nr_pages; 521 522 /* 523 * For physical range: [start, end]. We must skip the unassigned 524 * crashk resource with zero-valued "end" member. 525 */ 526 if (!end || start > end) 527 return 0; 528 529 page = pfn_to_page(start >> PAGE_SHIFT); 530 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 531 if (protect) 532 return set_pages_ro(page, nr_pages); 533 else 534 return set_pages_rw(page, nr_pages); 535 } 536 537 static void kexec_mark_crashkres(bool protect) 538 { 539 unsigned long control; 540 541 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 542 543 /* Don't touch the control code page used in crash_kexec().*/ 544 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 545 /* Control code page is located in the 2nd page. */ 546 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 547 control += KEXEC_CONTROL_PAGE_SIZE; 548 kexec_mark_range(control, crashk_res.end, protect); 549 } 550 551 void arch_kexec_protect_crashkres(void) 552 { 553 kexec_mark_crashkres(true); 554 } 555 556 void arch_kexec_unprotect_crashkres(void) 557 { 558 kexec_mark_crashkres(false); 559 } 560 561 /* 562 * During a traditional boot under SME, SME will encrypt the kernel, 563 * so the SME kexec kernel also needs to be un-encrypted in order to 564 * replicate a normal SME boot. 565 * 566 * During a traditional boot under SEV, the kernel has already been 567 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in 568 * order to replicate a normal SEV boot. 569 */ 570 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) 571 { 572 if (sev_active()) 573 return 0; 574 575 /* 576 * If SME is active we need to be sure that kexec pages are 577 * not encrypted because when we boot to the new kernel the 578 * pages won't be accessed encrypted (initially). 579 */ 580 return set_memory_decrypted((unsigned long)vaddr, pages); 581 } 582 583 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) 584 { 585 if (sev_active()) 586 return; 587 588 /* 589 * If SME is active we need to reset the pages back to being 590 * an encrypted mapping before freeing them. 591 */ 592 set_memory_encrypted((unsigned long)vaddr, pages); 593 } 594