1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 #include <linux/vmalloc.h> 21 22 #include <asm/init.h> 23 #include <asm/pgtable.h> 24 #include <asm/tlbflush.h> 25 #include <asm/mmu_context.h> 26 #include <asm/io_apic.h> 27 #include <asm/debugreg.h> 28 #include <asm/kexec-bzimage64.h> 29 #include <asm/setup.h> 30 31 #ifdef CONFIG_KEXEC_FILE 32 static struct kexec_file_ops *kexec_file_loaders[] = { 33 &kexec_bzImage64_ops, 34 }; 35 #endif 36 37 static void free_transition_pgtable(struct kimage *image) 38 { 39 free_page((unsigned long)image->arch.pud); 40 free_page((unsigned long)image->arch.pmd); 41 free_page((unsigned long)image->arch.pte); 42 } 43 44 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 45 { 46 pud_t *pud; 47 pmd_t *pmd; 48 pte_t *pte; 49 unsigned long vaddr, paddr; 50 int result = -ENOMEM; 51 52 vaddr = (unsigned long)relocate_kernel; 53 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 54 pgd += pgd_index(vaddr); 55 if (!pgd_present(*pgd)) { 56 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 57 if (!pud) 58 goto err; 59 image->arch.pud = pud; 60 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE)); 61 } 62 pud = pud_offset(pgd, vaddr); 63 if (!pud_present(*pud)) { 64 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 65 if (!pmd) 66 goto err; 67 image->arch.pmd = pmd; 68 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 69 } 70 pmd = pmd_offset(pud, vaddr); 71 if (!pmd_present(*pmd)) { 72 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 73 if (!pte) 74 goto err; 75 image->arch.pte = pte; 76 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 77 } 78 pte = pte_offset_kernel(pmd, vaddr); 79 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC)); 80 return 0; 81 err: 82 free_transition_pgtable(image); 83 return result; 84 } 85 86 static void *alloc_pgt_page(void *data) 87 { 88 struct kimage *image = (struct kimage *)data; 89 struct page *page; 90 void *p = NULL; 91 92 page = kimage_alloc_control_pages(image, 0); 93 if (page) { 94 p = page_address(page); 95 clear_page(p); 96 } 97 98 return p; 99 } 100 101 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 102 { 103 struct x86_mapping_info info = { 104 .alloc_pgt_page = alloc_pgt_page, 105 .context = image, 106 .pmd_flag = __PAGE_KERNEL_LARGE_EXEC, 107 }; 108 unsigned long mstart, mend; 109 pgd_t *level4p; 110 int result; 111 int i; 112 113 level4p = (pgd_t *)__va(start_pgtable); 114 clear_page(level4p); 115 for (i = 0; i < nr_pfn_mapped; i++) { 116 mstart = pfn_mapped[i].start << PAGE_SHIFT; 117 mend = pfn_mapped[i].end << PAGE_SHIFT; 118 119 result = kernel_ident_mapping_init(&info, 120 level4p, mstart, mend); 121 if (result) 122 return result; 123 } 124 125 /* 126 * segments's mem ranges could be outside 0 ~ max_pfn, 127 * for example when jump back to original kernel from kexeced kernel. 128 * or first kernel is booted with user mem map, and second kernel 129 * could be loaded out of that range. 130 */ 131 for (i = 0; i < image->nr_segments; i++) { 132 mstart = image->segment[i].mem; 133 mend = mstart + image->segment[i].memsz; 134 135 result = kernel_ident_mapping_init(&info, 136 level4p, mstart, mend); 137 138 if (result) 139 return result; 140 } 141 142 return init_transition_pgtable(image, level4p); 143 } 144 145 static void set_idt(void *newidt, u16 limit) 146 { 147 struct desc_ptr curidt; 148 149 /* x86-64 supports unaliged loads & stores */ 150 curidt.size = limit; 151 curidt.address = (unsigned long)newidt; 152 153 __asm__ __volatile__ ( 154 "lidtq %0\n" 155 : : "m" (curidt) 156 ); 157 }; 158 159 160 static void set_gdt(void *newgdt, u16 limit) 161 { 162 struct desc_ptr curgdt; 163 164 /* x86-64 supports unaligned loads & stores */ 165 curgdt.size = limit; 166 curgdt.address = (unsigned long)newgdt; 167 168 __asm__ __volatile__ ( 169 "lgdtq %0\n" 170 : : "m" (curgdt) 171 ); 172 }; 173 174 static void load_segments(void) 175 { 176 __asm__ __volatile__ ( 177 "\tmovl %0,%%ds\n" 178 "\tmovl %0,%%es\n" 179 "\tmovl %0,%%ss\n" 180 "\tmovl %0,%%fs\n" 181 "\tmovl %0,%%gs\n" 182 : : "a" (__KERNEL_DS) : "memory" 183 ); 184 } 185 186 #ifdef CONFIG_KEXEC_FILE 187 /* Update purgatory as needed after various image segments have been prepared */ 188 static int arch_update_purgatory(struct kimage *image) 189 { 190 int ret = 0; 191 192 if (!image->file_mode) 193 return 0; 194 195 /* Setup copying of backup region */ 196 if (image->type == KEXEC_TYPE_CRASH) { 197 ret = kexec_purgatory_get_set_symbol(image, 198 "purgatory_backup_dest", 199 &image->arch.backup_load_addr, 200 sizeof(image->arch.backup_load_addr), 0); 201 if (ret) 202 return ret; 203 204 ret = kexec_purgatory_get_set_symbol(image, 205 "purgatory_backup_src", 206 &image->arch.backup_src_start, 207 sizeof(image->arch.backup_src_start), 0); 208 if (ret) 209 return ret; 210 211 ret = kexec_purgatory_get_set_symbol(image, 212 "purgatory_backup_sz", 213 &image->arch.backup_src_sz, 214 sizeof(image->arch.backup_src_sz), 0); 215 if (ret) 216 return ret; 217 } 218 219 return ret; 220 } 221 #else /* !CONFIG_KEXEC_FILE */ 222 static inline int arch_update_purgatory(struct kimage *image) 223 { 224 return 0; 225 } 226 #endif /* CONFIG_KEXEC_FILE */ 227 228 int machine_kexec_prepare(struct kimage *image) 229 { 230 unsigned long start_pgtable; 231 int result; 232 233 /* Calculate the offsets */ 234 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 235 236 /* Setup the identity mapped 64bit page table */ 237 result = init_pgtable(image, start_pgtable); 238 if (result) 239 return result; 240 241 /* update purgatory as needed */ 242 result = arch_update_purgatory(image); 243 if (result) 244 return result; 245 246 return 0; 247 } 248 249 void machine_kexec_cleanup(struct kimage *image) 250 { 251 free_transition_pgtable(image); 252 } 253 254 /* 255 * Do not allocate memory (or fail in any way) in machine_kexec(). 256 * We are past the point of no return, committed to rebooting now. 257 */ 258 void machine_kexec(struct kimage *image) 259 { 260 unsigned long page_list[PAGES_NR]; 261 void *control_page; 262 int save_ftrace_enabled; 263 264 #ifdef CONFIG_KEXEC_JUMP 265 if (image->preserve_context) 266 save_processor_state(); 267 #endif 268 269 save_ftrace_enabled = __ftrace_enabled_save(); 270 271 /* Interrupts aren't acceptable while we reboot */ 272 local_irq_disable(); 273 hw_breakpoint_disable(); 274 275 if (image->preserve_context) { 276 #ifdef CONFIG_X86_IO_APIC 277 /* 278 * We need to put APICs in legacy mode so that we can 279 * get timer interrupts in second kernel. kexec/kdump 280 * paths already have calls to disable_IO_APIC() in 281 * one form or other. kexec jump path also need 282 * one. 283 */ 284 disable_IO_APIC(); 285 #endif 286 } 287 288 control_page = page_address(image->control_code_page) + PAGE_SIZE; 289 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 290 291 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 292 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 293 page_list[PA_TABLE_PAGE] = 294 (unsigned long)__pa(page_address(image->control_code_page)); 295 296 if (image->type == KEXEC_TYPE_DEFAULT) 297 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 298 << PAGE_SHIFT); 299 300 /* 301 * The segment registers are funny things, they have both a 302 * visible and an invisible part. Whenever the visible part is 303 * set to a specific selector, the invisible part is loaded 304 * with from a table in memory. At no other time is the 305 * descriptor table in memory accessed. 306 * 307 * I take advantage of this here by force loading the 308 * segments, before I zap the gdt with an invalid value. 309 */ 310 load_segments(); 311 /* 312 * The gdt & idt are now invalid. 313 * If you want to load them you must set up your own idt & gdt. 314 */ 315 set_gdt(phys_to_virt(0), 0); 316 set_idt(phys_to_virt(0), 0); 317 318 /* now call it */ 319 image->start = relocate_kernel((unsigned long)image->head, 320 (unsigned long)page_list, 321 image->start, 322 image->preserve_context); 323 324 #ifdef CONFIG_KEXEC_JUMP 325 if (image->preserve_context) 326 restore_processor_state(); 327 #endif 328 329 __ftrace_enabled_restore(save_ftrace_enabled); 330 } 331 332 void arch_crash_save_vmcoreinfo(void) 333 { 334 VMCOREINFO_NUMBER(phys_base); 335 VMCOREINFO_SYMBOL(init_level4_pgt); 336 337 #ifdef CONFIG_NUMA 338 VMCOREINFO_SYMBOL(node_data); 339 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 340 #endif 341 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 342 kaslr_offset()); 343 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); 344 } 345 346 /* arch-dependent functionality related to kexec file-based syscall */ 347 348 #ifdef CONFIG_KEXEC_FILE 349 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 350 unsigned long buf_len) 351 { 352 int i, ret = -ENOEXEC; 353 struct kexec_file_ops *fops; 354 355 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) { 356 fops = kexec_file_loaders[i]; 357 if (!fops || !fops->probe) 358 continue; 359 360 ret = fops->probe(buf, buf_len); 361 if (!ret) { 362 image->fops = fops; 363 return ret; 364 } 365 } 366 367 return ret; 368 } 369 370 void *arch_kexec_kernel_image_load(struct kimage *image) 371 { 372 vfree(image->arch.elf_headers); 373 image->arch.elf_headers = NULL; 374 375 if (!image->fops || !image->fops->load) 376 return ERR_PTR(-ENOEXEC); 377 378 return image->fops->load(image, image->kernel_buf, 379 image->kernel_buf_len, image->initrd_buf, 380 image->initrd_buf_len, image->cmdline_buf, 381 image->cmdline_buf_len); 382 } 383 384 int arch_kimage_file_post_load_cleanup(struct kimage *image) 385 { 386 if (!image->fops || !image->fops->cleanup) 387 return 0; 388 389 return image->fops->cleanup(image->image_loader_data); 390 } 391 392 #ifdef CONFIG_KEXEC_VERIFY_SIG 393 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel, 394 unsigned long kernel_len) 395 { 396 if (!image->fops || !image->fops->verify_sig) { 397 pr_debug("kernel loader does not support signature verification."); 398 return -EKEYREJECTED; 399 } 400 401 return image->fops->verify_sig(kernel, kernel_len); 402 } 403 #endif 404 405 /* 406 * Apply purgatory relocations. 407 * 408 * ehdr: Pointer to elf headers 409 * sechdrs: Pointer to section headers. 410 * relsec: section index of SHT_RELA section. 411 * 412 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 413 */ 414 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr, 415 Elf64_Shdr *sechdrs, unsigned int relsec) 416 { 417 unsigned int i; 418 Elf64_Rela *rel; 419 Elf64_Sym *sym; 420 void *location; 421 Elf64_Shdr *section, *symtabsec; 422 unsigned long address, sec_base, value; 423 const char *strtab, *name, *shstrtab; 424 425 /* 426 * ->sh_offset has been modified to keep the pointer to section 427 * contents in memory 428 */ 429 rel = (void *)sechdrs[relsec].sh_offset; 430 431 /* Section to which relocations apply */ 432 section = &sechdrs[sechdrs[relsec].sh_info]; 433 434 pr_debug("Applying relocate section %u to %u\n", relsec, 435 sechdrs[relsec].sh_info); 436 437 /* Associated symbol table */ 438 symtabsec = &sechdrs[sechdrs[relsec].sh_link]; 439 440 /* String table */ 441 if (symtabsec->sh_link >= ehdr->e_shnum) { 442 /* Invalid strtab section number */ 443 pr_err("Invalid string table section index %d\n", 444 symtabsec->sh_link); 445 return -ENOEXEC; 446 } 447 448 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset; 449 450 /* section header string table */ 451 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset; 452 453 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 454 455 /* 456 * rel[i].r_offset contains byte offset from beginning 457 * of section to the storage unit affected. 458 * 459 * This is location to update (->sh_offset). This is temporary 460 * buffer where section is currently loaded. This will finally 461 * be loaded to a different address later, pointed to by 462 * ->sh_addr. kexec takes care of moving it 463 * (kexec_load_segment()). 464 */ 465 location = (void *)(section->sh_offset + rel[i].r_offset); 466 467 /* Final address of the location */ 468 address = section->sh_addr + rel[i].r_offset; 469 470 /* 471 * rel[i].r_info contains information about symbol table index 472 * w.r.t which relocation must be made and type of relocation 473 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 474 * these respectively. 475 */ 476 sym = (Elf64_Sym *)symtabsec->sh_offset + 477 ELF64_R_SYM(rel[i].r_info); 478 479 if (sym->st_name) 480 name = strtab + sym->st_name; 481 else 482 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 483 484 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 485 name, sym->st_info, sym->st_shndx, sym->st_value, 486 sym->st_size); 487 488 if (sym->st_shndx == SHN_UNDEF) { 489 pr_err("Undefined symbol: %s\n", name); 490 return -ENOEXEC; 491 } 492 493 if (sym->st_shndx == SHN_COMMON) { 494 pr_err("symbol '%s' in common section\n", name); 495 return -ENOEXEC; 496 } 497 498 if (sym->st_shndx == SHN_ABS) 499 sec_base = 0; 500 else if (sym->st_shndx >= ehdr->e_shnum) { 501 pr_err("Invalid section %d for symbol %s\n", 502 sym->st_shndx, name); 503 return -ENOEXEC; 504 } else 505 sec_base = sechdrs[sym->st_shndx].sh_addr; 506 507 value = sym->st_value; 508 value += sec_base; 509 value += rel[i].r_addend; 510 511 switch (ELF64_R_TYPE(rel[i].r_info)) { 512 case R_X86_64_NONE: 513 break; 514 case R_X86_64_64: 515 *(u64 *)location = value; 516 break; 517 case R_X86_64_32: 518 *(u32 *)location = value; 519 if (value != *(u32 *)location) 520 goto overflow; 521 break; 522 case R_X86_64_32S: 523 *(s32 *)location = value; 524 if ((s64)value != *(s32 *)location) 525 goto overflow; 526 break; 527 case R_X86_64_PC32: 528 value -= (u64)address; 529 *(u32 *)location = value; 530 break; 531 default: 532 pr_err("Unknown rela relocation: %llu\n", 533 ELF64_R_TYPE(rel[i].r_info)); 534 return -ENOEXEC; 535 } 536 } 537 return 0; 538 539 overflow: 540 pr_err("Overflow in relocation type %d value 0x%lx\n", 541 (int)ELF64_R_TYPE(rel[i].r_info), value); 542 return -ENOEXEC; 543 } 544 #endif /* CONFIG_KEXEC_FILE */ 545 546 static int 547 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 548 { 549 struct page *page; 550 unsigned int nr_pages; 551 552 /* 553 * For physical range: [start, end]. We must skip the unassigned 554 * crashk resource with zero-valued "end" member. 555 */ 556 if (!end || start > end) 557 return 0; 558 559 page = pfn_to_page(start >> PAGE_SHIFT); 560 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 561 if (protect) 562 return set_pages_ro(page, nr_pages); 563 else 564 return set_pages_rw(page, nr_pages); 565 } 566 567 static void kexec_mark_crashkres(bool protect) 568 { 569 unsigned long control; 570 571 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 572 573 /* Don't touch the control code page used in crash_kexec().*/ 574 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 575 /* Control code page is located in the 2nd page. */ 576 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 577 control += KEXEC_CONTROL_PAGE_SIZE; 578 kexec_mark_range(control, crashk_res.end, protect); 579 } 580 581 void arch_kexec_protect_crashkres(void) 582 { 583 kexec_mark_crashkres(true); 584 } 585 586 void arch_kexec_unprotect_crashkres(void) 587 { 588 kexec_mark_crashkres(false); 589 } 590