1 /* 2 * handle transition of Linux booting another kernel 3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/mm.h> 12 #include <linux/kexec.h> 13 #include <linux/string.h> 14 #include <linux/gfp.h> 15 #include <linux/reboot.h> 16 #include <linux/numa.h> 17 #include <linux/ftrace.h> 18 #include <linux/io.h> 19 #include <linux/suspend.h> 20 #include <linux/vmalloc.h> 21 22 #include <asm/init.h> 23 #include <asm/pgtable.h> 24 #include <asm/tlbflush.h> 25 #include <asm/mmu_context.h> 26 #include <asm/io_apic.h> 27 #include <asm/debugreg.h> 28 #include <asm/kexec-bzimage64.h> 29 #include <asm/setup.h> 30 31 #ifdef CONFIG_KEXEC_FILE 32 static struct kexec_file_ops *kexec_file_loaders[] = { 33 &kexec_bzImage64_ops, 34 }; 35 #endif 36 37 static void free_transition_pgtable(struct kimage *image) 38 { 39 free_page((unsigned long)image->arch.p4d); 40 free_page((unsigned long)image->arch.pud); 41 free_page((unsigned long)image->arch.pmd); 42 free_page((unsigned long)image->arch.pte); 43 } 44 45 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) 46 { 47 p4d_t *p4d; 48 pud_t *pud; 49 pmd_t *pmd; 50 pte_t *pte; 51 unsigned long vaddr, paddr; 52 int result = -ENOMEM; 53 54 vaddr = (unsigned long)relocate_kernel; 55 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); 56 pgd += pgd_index(vaddr); 57 if (!pgd_present(*pgd)) { 58 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); 59 if (!p4d) 60 goto err; 61 image->arch.p4d = p4d; 62 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); 63 } 64 p4d = p4d_offset(pgd, vaddr); 65 if (!p4d_present(*p4d)) { 66 pud = (pud_t *)get_zeroed_page(GFP_KERNEL); 67 if (!pud) 68 goto err; 69 image->arch.pud = pud; 70 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); 71 } 72 pud = pud_offset(p4d, vaddr); 73 if (!pud_present(*pud)) { 74 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); 75 if (!pmd) 76 goto err; 77 image->arch.pmd = pmd; 78 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); 79 } 80 pmd = pmd_offset(pud, vaddr); 81 if (!pmd_present(*pmd)) { 82 pte = (pte_t *)get_zeroed_page(GFP_KERNEL); 83 if (!pte) 84 goto err; 85 image->arch.pte = pte; 86 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); 87 } 88 pte = pte_offset_kernel(pmd, vaddr); 89 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC)); 90 return 0; 91 err: 92 free_transition_pgtable(image); 93 return result; 94 } 95 96 static void *alloc_pgt_page(void *data) 97 { 98 struct kimage *image = (struct kimage *)data; 99 struct page *page; 100 void *p = NULL; 101 102 page = kimage_alloc_control_pages(image, 0); 103 if (page) { 104 p = page_address(page); 105 clear_page(p); 106 } 107 108 return p; 109 } 110 111 static int init_pgtable(struct kimage *image, unsigned long start_pgtable) 112 { 113 struct x86_mapping_info info = { 114 .alloc_pgt_page = alloc_pgt_page, 115 .context = image, 116 .pmd_flag = __PAGE_KERNEL_LARGE_EXEC, 117 }; 118 unsigned long mstart, mend; 119 pgd_t *level4p; 120 int result; 121 int i; 122 123 level4p = (pgd_t *)__va(start_pgtable); 124 clear_page(level4p); 125 for (i = 0; i < nr_pfn_mapped; i++) { 126 mstart = pfn_mapped[i].start << PAGE_SHIFT; 127 mend = pfn_mapped[i].end << PAGE_SHIFT; 128 129 result = kernel_ident_mapping_init(&info, 130 level4p, mstart, mend); 131 if (result) 132 return result; 133 } 134 135 /* 136 * segments's mem ranges could be outside 0 ~ max_pfn, 137 * for example when jump back to original kernel from kexeced kernel. 138 * or first kernel is booted with user mem map, and second kernel 139 * could be loaded out of that range. 140 */ 141 for (i = 0; i < image->nr_segments; i++) { 142 mstart = image->segment[i].mem; 143 mend = mstart + image->segment[i].memsz; 144 145 result = kernel_ident_mapping_init(&info, 146 level4p, mstart, mend); 147 148 if (result) 149 return result; 150 } 151 152 return init_transition_pgtable(image, level4p); 153 } 154 155 static void set_idt(void *newidt, u16 limit) 156 { 157 struct desc_ptr curidt; 158 159 /* x86-64 supports unaliged loads & stores */ 160 curidt.size = limit; 161 curidt.address = (unsigned long)newidt; 162 163 __asm__ __volatile__ ( 164 "lidtq %0\n" 165 : : "m" (curidt) 166 ); 167 }; 168 169 170 static void set_gdt(void *newgdt, u16 limit) 171 { 172 struct desc_ptr curgdt; 173 174 /* x86-64 supports unaligned loads & stores */ 175 curgdt.size = limit; 176 curgdt.address = (unsigned long)newgdt; 177 178 __asm__ __volatile__ ( 179 "lgdtq %0\n" 180 : : "m" (curgdt) 181 ); 182 }; 183 184 static void load_segments(void) 185 { 186 __asm__ __volatile__ ( 187 "\tmovl %0,%%ds\n" 188 "\tmovl %0,%%es\n" 189 "\tmovl %0,%%ss\n" 190 "\tmovl %0,%%fs\n" 191 "\tmovl %0,%%gs\n" 192 : : "a" (__KERNEL_DS) : "memory" 193 ); 194 } 195 196 #ifdef CONFIG_KEXEC_FILE 197 /* Update purgatory as needed after various image segments have been prepared */ 198 static int arch_update_purgatory(struct kimage *image) 199 { 200 int ret = 0; 201 202 if (!image->file_mode) 203 return 0; 204 205 /* Setup copying of backup region */ 206 if (image->type == KEXEC_TYPE_CRASH) { 207 ret = kexec_purgatory_get_set_symbol(image, 208 "purgatory_backup_dest", 209 &image->arch.backup_load_addr, 210 sizeof(image->arch.backup_load_addr), 0); 211 if (ret) 212 return ret; 213 214 ret = kexec_purgatory_get_set_symbol(image, 215 "purgatory_backup_src", 216 &image->arch.backup_src_start, 217 sizeof(image->arch.backup_src_start), 0); 218 if (ret) 219 return ret; 220 221 ret = kexec_purgatory_get_set_symbol(image, 222 "purgatory_backup_sz", 223 &image->arch.backup_src_sz, 224 sizeof(image->arch.backup_src_sz), 0); 225 if (ret) 226 return ret; 227 } 228 229 return ret; 230 } 231 #else /* !CONFIG_KEXEC_FILE */ 232 static inline int arch_update_purgatory(struct kimage *image) 233 { 234 return 0; 235 } 236 #endif /* CONFIG_KEXEC_FILE */ 237 238 int machine_kexec_prepare(struct kimage *image) 239 { 240 unsigned long start_pgtable; 241 int result; 242 243 /* Calculate the offsets */ 244 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; 245 246 /* Setup the identity mapped 64bit page table */ 247 result = init_pgtable(image, start_pgtable); 248 if (result) 249 return result; 250 251 /* update purgatory as needed */ 252 result = arch_update_purgatory(image); 253 if (result) 254 return result; 255 256 return 0; 257 } 258 259 void machine_kexec_cleanup(struct kimage *image) 260 { 261 free_transition_pgtable(image); 262 } 263 264 /* 265 * Do not allocate memory (or fail in any way) in machine_kexec(). 266 * We are past the point of no return, committed to rebooting now. 267 */ 268 void machine_kexec(struct kimage *image) 269 { 270 unsigned long page_list[PAGES_NR]; 271 void *control_page; 272 int save_ftrace_enabled; 273 274 #ifdef CONFIG_KEXEC_JUMP 275 if (image->preserve_context) 276 save_processor_state(); 277 #endif 278 279 save_ftrace_enabled = __ftrace_enabled_save(); 280 281 /* Interrupts aren't acceptable while we reboot */ 282 local_irq_disable(); 283 hw_breakpoint_disable(); 284 285 if (image->preserve_context) { 286 #ifdef CONFIG_X86_IO_APIC 287 /* 288 * We need to put APICs in legacy mode so that we can 289 * get timer interrupts in second kernel. kexec/kdump 290 * paths already have calls to disable_IO_APIC() in 291 * one form or other. kexec jump path also need 292 * one. 293 */ 294 disable_IO_APIC(); 295 #endif 296 } 297 298 control_page = page_address(image->control_code_page) + PAGE_SIZE; 299 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); 300 301 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); 302 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; 303 page_list[PA_TABLE_PAGE] = 304 (unsigned long)__pa(page_address(image->control_code_page)); 305 306 if (image->type == KEXEC_TYPE_DEFAULT) 307 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) 308 << PAGE_SHIFT); 309 310 /* 311 * The segment registers are funny things, they have both a 312 * visible and an invisible part. Whenever the visible part is 313 * set to a specific selector, the invisible part is loaded 314 * with from a table in memory. At no other time is the 315 * descriptor table in memory accessed. 316 * 317 * I take advantage of this here by force loading the 318 * segments, before I zap the gdt with an invalid value. 319 */ 320 load_segments(); 321 /* 322 * The gdt & idt are now invalid. 323 * If you want to load them you must set up your own idt & gdt. 324 */ 325 set_gdt(phys_to_virt(0), 0); 326 set_idt(phys_to_virt(0), 0); 327 328 /* now call it */ 329 image->start = relocate_kernel((unsigned long)image->head, 330 (unsigned long)page_list, 331 image->start, 332 image->preserve_context); 333 334 #ifdef CONFIG_KEXEC_JUMP 335 if (image->preserve_context) 336 restore_processor_state(); 337 #endif 338 339 __ftrace_enabled_restore(save_ftrace_enabled); 340 } 341 342 void arch_crash_save_vmcoreinfo(void) 343 { 344 VMCOREINFO_NUMBER(phys_base); 345 VMCOREINFO_SYMBOL(init_level4_pgt); 346 347 #ifdef CONFIG_NUMA 348 VMCOREINFO_SYMBOL(node_data); 349 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); 350 #endif 351 vmcoreinfo_append_str("KERNELOFFSET=%lx\n", 352 kaslr_offset()); 353 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); 354 } 355 356 /* arch-dependent functionality related to kexec file-based syscall */ 357 358 #ifdef CONFIG_KEXEC_FILE 359 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 360 unsigned long buf_len) 361 { 362 int i, ret = -ENOEXEC; 363 struct kexec_file_ops *fops; 364 365 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) { 366 fops = kexec_file_loaders[i]; 367 if (!fops || !fops->probe) 368 continue; 369 370 ret = fops->probe(buf, buf_len); 371 if (!ret) { 372 image->fops = fops; 373 return ret; 374 } 375 } 376 377 return ret; 378 } 379 380 void *arch_kexec_kernel_image_load(struct kimage *image) 381 { 382 vfree(image->arch.elf_headers); 383 image->arch.elf_headers = NULL; 384 385 if (!image->fops || !image->fops->load) 386 return ERR_PTR(-ENOEXEC); 387 388 return image->fops->load(image, image->kernel_buf, 389 image->kernel_buf_len, image->initrd_buf, 390 image->initrd_buf_len, image->cmdline_buf, 391 image->cmdline_buf_len); 392 } 393 394 int arch_kimage_file_post_load_cleanup(struct kimage *image) 395 { 396 if (!image->fops || !image->fops->cleanup) 397 return 0; 398 399 return image->fops->cleanup(image->image_loader_data); 400 } 401 402 #ifdef CONFIG_KEXEC_VERIFY_SIG 403 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel, 404 unsigned long kernel_len) 405 { 406 if (!image->fops || !image->fops->verify_sig) { 407 pr_debug("kernel loader does not support signature verification."); 408 return -EKEYREJECTED; 409 } 410 411 return image->fops->verify_sig(kernel, kernel_len); 412 } 413 #endif 414 415 /* 416 * Apply purgatory relocations. 417 * 418 * ehdr: Pointer to elf headers 419 * sechdrs: Pointer to section headers. 420 * relsec: section index of SHT_RELA section. 421 * 422 * TODO: Some of the code belongs to generic code. Move that in kexec.c. 423 */ 424 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr, 425 Elf64_Shdr *sechdrs, unsigned int relsec) 426 { 427 unsigned int i; 428 Elf64_Rela *rel; 429 Elf64_Sym *sym; 430 void *location; 431 Elf64_Shdr *section, *symtabsec; 432 unsigned long address, sec_base, value; 433 const char *strtab, *name, *shstrtab; 434 435 /* 436 * ->sh_offset has been modified to keep the pointer to section 437 * contents in memory 438 */ 439 rel = (void *)sechdrs[relsec].sh_offset; 440 441 /* Section to which relocations apply */ 442 section = &sechdrs[sechdrs[relsec].sh_info]; 443 444 pr_debug("Applying relocate section %u to %u\n", relsec, 445 sechdrs[relsec].sh_info); 446 447 /* Associated symbol table */ 448 symtabsec = &sechdrs[sechdrs[relsec].sh_link]; 449 450 /* String table */ 451 if (symtabsec->sh_link >= ehdr->e_shnum) { 452 /* Invalid strtab section number */ 453 pr_err("Invalid string table section index %d\n", 454 symtabsec->sh_link); 455 return -ENOEXEC; 456 } 457 458 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset; 459 460 /* section header string table */ 461 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset; 462 463 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 464 465 /* 466 * rel[i].r_offset contains byte offset from beginning 467 * of section to the storage unit affected. 468 * 469 * This is location to update (->sh_offset). This is temporary 470 * buffer where section is currently loaded. This will finally 471 * be loaded to a different address later, pointed to by 472 * ->sh_addr. kexec takes care of moving it 473 * (kexec_load_segment()). 474 */ 475 location = (void *)(section->sh_offset + rel[i].r_offset); 476 477 /* Final address of the location */ 478 address = section->sh_addr + rel[i].r_offset; 479 480 /* 481 * rel[i].r_info contains information about symbol table index 482 * w.r.t which relocation must be made and type of relocation 483 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get 484 * these respectively. 485 */ 486 sym = (Elf64_Sym *)symtabsec->sh_offset + 487 ELF64_R_SYM(rel[i].r_info); 488 489 if (sym->st_name) 490 name = strtab + sym->st_name; 491 else 492 name = shstrtab + sechdrs[sym->st_shndx].sh_name; 493 494 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", 495 name, sym->st_info, sym->st_shndx, sym->st_value, 496 sym->st_size); 497 498 if (sym->st_shndx == SHN_UNDEF) { 499 pr_err("Undefined symbol: %s\n", name); 500 return -ENOEXEC; 501 } 502 503 if (sym->st_shndx == SHN_COMMON) { 504 pr_err("symbol '%s' in common section\n", name); 505 return -ENOEXEC; 506 } 507 508 if (sym->st_shndx == SHN_ABS) 509 sec_base = 0; 510 else if (sym->st_shndx >= ehdr->e_shnum) { 511 pr_err("Invalid section %d for symbol %s\n", 512 sym->st_shndx, name); 513 return -ENOEXEC; 514 } else 515 sec_base = sechdrs[sym->st_shndx].sh_addr; 516 517 value = sym->st_value; 518 value += sec_base; 519 value += rel[i].r_addend; 520 521 switch (ELF64_R_TYPE(rel[i].r_info)) { 522 case R_X86_64_NONE: 523 break; 524 case R_X86_64_64: 525 *(u64 *)location = value; 526 break; 527 case R_X86_64_32: 528 *(u32 *)location = value; 529 if (value != *(u32 *)location) 530 goto overflow; 531 break; 532 case R_X86_64_32S: 533 *(s32 *)location = value; 534 if ((s64)value != *(s32 *)location) 535 goto overflow; 536 break; 537 case R_X86_64_PC32: 538 value -= (u64)address; 539 *(u32 *)location = value; 540 break; 541 default: 542 pr_err("Unknown rela relocation: %llu\n", 543 ELF64_R_TYPE(rel[i].r_info)); 544 return -ENOEXEC; 545 } 546 } 547 return 0; 548 549 overflow: 550 pr_err("Overflow in relocation type %d value 0x%lx\n", 551 (int)ELF64_R_TYPE(rel[i].r_info), value); 552 return -ENOEXEC; 553 } 554 #endif /* CONFIG_KEXEC_FILE */ 555 556 static int 557 kexec_mark_range(unsigned long start, unsigned long end, bool protect) 558 { 559 struct page *page; 560 unsigned int nr_pages; 561 562 /* 563 * For physical range: [start, end]. We must skip the unassigned 564 * crashk resource with zero-valued "end" member. 565 */ 566 if (!end || start > end) 567 return 0; 568 569 page = pfn_to_page(start >> PAGE_SHIFT); 570 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 571 if (protect) 572 return set_pages_ro(page, nr_pages); 573 else 574 return set_pages_rw(page, nr_pages); 575 } 576 577 static void kexec_mark_crashkres(bool protect) 578 { 579 unsigned long control; 580 581 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); 582 583 /* Don't touch the control code page used in crash_kexec().*/ 584 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); 585 /* Control code page is located in the 2nd page. */ 586 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); 587 control += KEXEC_CONTROL_PAGE_SIZE; 588 kexec_mark_range(control, crashk_res.end, protect); 589 } 590 591 void arch_kexec_protect_crashkres(void) 592 { 593 kexec_mark_crashkres(true); 594 } 595 596 void arch_kexec_unprotect_crashkres(void) 597 { 598 kexec_mark_crashkres(false); 599 } 600