1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds 4 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> 5 * Copyright (C) 2002 Andi Kleen 6 * 7 * This handles calls from both 32bit and 64bit mode. 8 * 9 * Lock order: 10 * contex.ldt_usr_sem 11 * mmap_sem 12 * context.lock 13 */ 14 15 #include <linux/errno.h> 16 #include <linux/gfp.h> 17 #include <linux/sched.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/syscalls.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/uaccess.h> 25 26 #include <asm/ldt.h> 27 #include <asm/tlb.h> 28 #include <asm/desc.h> 29 #include <asm/mmu_context.h> 30 #include <asm/syscalls.h> 31 #include <asm/pgtable_areas.h> 32 33 /* This is a multiple of PAGE_SIZE. */ 34 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE) 35 36 static inline void *ldt_slot_va(int slot) 37 { 38 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot); 39 } 40 41 void load_mm_ldt(struct mm_struct *mm) 42 { 43 struct ldt_struct *ldt; 44 45 /* READ_ONCE synchronizes with smp_store_release */ 46 ldt = READ_ONCE(mm->context.ldt); 47 48 /* 49 * Any change to mm->context.ldt is followed by an IPI to all 50 * CPUs with the mm active. The LDT will not be freed until 51 * after the IPI is handled by all such CPUs. This means that, 52 * if the ldt_struct changes before we return, the values we see 53 * will be safe, and the new values will be loaded before we run 54 * any user code. 55 * 56 * NB: don't try to convert this to use RCU without extreme care. 57 * We would still need IRQs off, because we don't want to change 58 * the local LDT after an IPI loaded a newer value than the one 59 * that we can see. 60 */ 61 62 if (unlikely(ldt)) { 63 if (static_cpu_has(X86_FEATURE_PTI)) { 64 if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) { 65 /* 66 * Whoops -- either the new LDT isn't mapped 67 * (if slot == -1) or is mapped into a bogus 68 * slot (if slot > 1). 69 */ 70 clear_LDT(); 71 return; 72 } 73 74 /* 75 * If page table isolation is enabled, ldt->entries 76 * will not be mapped in the userspace pagetables. 77 * Tell the CPU to access the LDT through the alias 78 * at ldt_slot_va(ldt->slot). 79 */ 80 set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries); 81 } else { 82 set_ldt(ldt->entries, ldt->nr_entries); 83 } 84 } else { 85 clear_LDT(); 86 } 87 } 88 89 void switch_ldt(struct mm_struct *prev, struct mm_struct *next) 90 { 91 /* 92 * Load the LDT if either the old or new mm had an LDT. 93 * 94 * An mm will never go from having an LDT to not having an LDT. Two 95 * mms never share an LDT, so we don't gain anything by checking to 96 * see whether the LDT changed. There's also no guarantee that 97 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL, 98 * then prev->context.ldt will also be non-NULL. 99 * 100 * If we really cared, we could optimize the case where prev == next 101 * and we're exiting lazy mode. Most of the time, if this happens, 102 * we don't actually need to reload LDTR, but modify_ldt() is mostly 103 * used by legacy code and emulators where we don't need this level of 104 * performance. 105 * 106 * This uses | instead of || because it generates better code. 107 */ 108 if (unlikely((unsigned long)prev->context.ldt | 109 (unsigned long)next->context.ldt)) 110 load_mm_ldt(next); 111 112 DEBUG_LOCKS_WARN_ON(preemptible()); 113 } 114 115 static void refresh_ldt_segments(void) 116 { 117 #ifdef CONFIG_X86_64 118 unsigned short sel; 119 120 /* 121 * Make sure that the cached DS and ES descriptors match the updated 122 * LDT. 123 */ 124 savesegment(ds, sel); 125 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) 126 loadsegment(ds, sel); 127 128 savesegment(es, sel); 129 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) 130 loadsegment(es, sel); 131 #endif 132 } 133 134 /* context.lock is held by the task which issued the smp function call */ 135 static void flush_ldt(void *__mm) 136 { 137 struct mm_struct *mm = __mm; 138 139 if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm) 140 return; 141 142 load_mm_ldt(mm); 143 144 refresh_ldt_segments(); 145 } 146 147 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */ 148 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries) 149 { 150 struct ldt_struct *new_ldt; 151 unsigned int alloc_size; 152 153 if (num_entries > LDT_ENTRIES) 154 return NULL; 155 156 new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL); 157 if (!new_ldt) 158 return NULL; 159 160 BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct)); 161 alloc_size = num_entries * LDT_ENTRY_SIZE; 162 163 /* 164 * Xen is very picky: it requires a page-aligned LDT that has no 165 * trailing nonzero bytes in any page that contains LDT descriptors. 166 * Keep it simple: zero the whole allocation and never allocate less 167 * than PAGE_SIZE. 168 */ 169 if (alloc_size > PAGE_SIZE) 170 new_ldt->entries = vzalloc(alloc_size); 171 else 172 new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL); 173 174 if (!new_ldt->entries) { 175 kfree(new_ldt); 176 return NULL; 177 } 178 179 /* The new LDT isn't aliased for PTI yet. */ 180 new_ldt->slot = -1; 181 182 new_ldt->nr_entries = num_entries; 183 return new_ldt; 184 } 185 186 #ifdef CONFIG_PAGE_TABLE_ISOLATION 187 188 static void do_sanity_check(struct mm_struct *mm, 189 bool had_kernel_mapping, 190 bool had_user_mapping) 191 { 192 if (mm->context.ldt) { 193 /* 194 * We already had an LDT. The top-level entry should already 195 * have been allocated and synchronized with the usermode 196 * tables. 197 */ 198 WARN_ON(!had_kernel_mapping); 199 if (boot_cpu_has(X86_FEATURE_PTI)) 200 WARN_ON(!had_user_mapping); 201 } else { 202 /* 203 * This is the first time we're mapping an LDT for this process. 204 * Sync the pgd to the usermode tables. 205 */ 206 WARN_ON(had_kernel_mapping); 207 if (boot_cpu_has(X86_FEATURE_PTI)) 208 WARN_ON(had_user_mapping); 209 } 210 } 211 212 #ifdef CONFIG_X86_PAE 213 214 static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va) 215 { 216 p4d_t *p4d; 217 pud_t *pud; 218 219 if (pgd->pgd == 0) 220 return NULL; 221 222 p4d = p4d_offset(pgd, va); 223 if (p4d_none(*p4d)) 224 return NULL; 225 226 pud = pud_offset(p4d, va); 227 if (pud_none(*pud)) 228 return NULL; 229 230 return pmd_offset(pud, va); 231 } 232 233 static void map_ldt_struct_to_user(struct mm_struct *mm) 234 { 235 pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR); 236 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); 237 pmd_t *k_pmd, *u_pmd; 238 239 k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR); 240 u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR); 241 242 if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) 243 set_pmd(u_pmd, *k_pmd); 244 } 245 246 static void sanity_check_ldt_mapping(struct mm_struct *mm) 247 { 248 pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR); 249 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); 250 bool had_kernel, had_user; 251 pmd_t *k_pmd, *u_pmd; 252 253 k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR); 254 u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR); 255 had_kernel = (k_pmd->pmd != 0); 256 had_user = (u_pmd->pmd != 0); 257 258 do_sanity_check(mm, had_kernel, had_user); 259 } 260 261 #else /* !CONFIG_X86_PAE */ 262 263 static void map_ldt_struct_to_user(struct mm_struct *mm) 264 { 265 pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); 266 267 if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) 268 set_pgd(kernel_to_user_pgdp(pgd), *pgd); 269 } 270 271 static void sanity_check_ldt_mapping(struct mm_struct *mm) 272 { 273 pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); 274 bool had_kernel = (pgd->pgd != 0); 275 bool had_user = (kernel_to_user_pgdp(pgd)->pgd != 0); 276 277 do_sanity_check(mm, had_kernel, had_user); 278 } 279 280 #endif /* CONFIG_X86_PAE */ 281 282 /* 283 * If PTI is enabled, this maps the LDT into the kernelmode and 284 * usermode tables for the given mm. 285 */ 286 static int 287 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) 288 { 289 unsigned long va; 290 bool is_vmalloc; 291 spinlock_t *ptl; 292 int i, nr_pages; 293 294 if (!boot_cpu_has(X86_FEATURE_PTI)) 295 return 0; 296 297 /* 298 * Any given ldt_struct should have map_ldt_struct() called at most 299 * once. 300 */ 301 WARN_ON(ldt->slot != -1); 302 303 /* Check if the current mappings are sane */ 304 sanity_check_ldt_mapping(mm); 305 306 is_vmalloc = is_vmalloc_addr(ldt->entries); 307 308 nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); 309 310 for (i = 0; i < nr_pages; i++) { 311 unsigned long offset = i << PAGE_SHIFT; 312 const void *src = (char *)ldt->entries + offset; 313 unsigned long pfn; 314 pgprot_t pte_prot; 315 pte_t pte, *ptep; 316 317 va = (unsigned long)ldt_slot_va(slot) + offset; 318 pfn = is_vmalloc ? vmalloc_to_pfn(src) : 319 page_to_pfn(virt_to_page(src)); 320 /* 321 * Treat the PTI LDT range as a *userspace* range. 322 * get_locked_pte() will allocate all needed pagetables 323 * and account for them in this mm. 324 */ 325 ptep = get_locked_pte(mm, va, &ptl); 326 if (!ptep) 327 return -ENOMEM; 328 /* 329 * Map it RO so the easy to find address is not a primary 330 * target via some kernel interface which misses a 331 * permission check. 332 */ 333 pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL); 334 /* Filter out unsuppored __PAGE_KERNEL* bits: */ 335 pgprot_val(pte_prot) &= __supported_pte_mask; 336 pte = pfn_pte(pfn, pte_prot); 337 set_pte_at(mm, va, ptep, pte); 338 pte_unmap_unlock(ptep, ptl); 339 } 340 341 /* Propagate LDT mapping to the user page-table */ 342 map_ldt_struct_to_user(mm); 343 344 ldt->slot = slot; 345 return 0; 346 } 347 348 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) 349 { 350 unsigned long va; 351 int i, nr_pages; 352 353 if (!ldt) 354 return; 355 356 /* LDT map/unmap is only required for PTI */ 357 if (!boot_cpu_has(X86_FEATURE_PTI)) 358 return; 359 360 nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); 361 362 for (i = 0; i < nr_pages; i++) { 363 unsigned long offset = i << PAGE_SHIFT; 364 spinlock_t *ptl; 365 pte_t *ptep; 366 367 va = (unsigned long)ldt_slot_va(ldt->slot) + offset; 368 ptep = get_locked_pte(mm, va, &ptl); 369 pte_clear(mm, va, ptep); 370 pte_unmap_unlock(ptep, ptl); 371 } 372 373 va = (unsigned long)ldt_slot_va(ldt->slot); 374 flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false); 375 } 376 377 #else /* !CONFIG_PAGE_TABLE_ISOLATION */ 378 379 static int 380 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) 381 { 382 return 0; 383 } 384 385 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) 386 { 387 } 388 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 389 390 static void free_ldt_pgtables(struct mm_struct *mm) 391 { 392 #ifdef CONFIG_PAGE_TABLE_ISOLATION 393 struct mmu_gather tlb; 394 unsigned long start = LDT_BASE_ADDR; 395 unsigned long end = LDT_END_ADDR; 396 397 if (!boot_cpu_has(X86_FEATURE_PTI)) 398 return; 399 400 tlb_gather_mmu(&tlb, mm, start, end); 401 free_pgd_range(&tlb, start, end, start, end); 402 tlb_finish_mmu(&tlb, start, end); 403 #endif 404 } 405 406 /* After calling this, the LDT is immutable. */ 407 static void finalize_ldt_struct(struct ldt_struct *ldt) 408 { 409 paravirt_alloc_ldt(ldt->entries, ldt->nr_entries); 410 } 411 412 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt) 413 { 414 mutex_lock(&mm->context.lock); 415 416 /* Synchronizes with READ_ONCE in load_mm_ldt. */ 417 smp_store_release(&mm->context.ldt, ldt); 418 419 /* Activate the LDT for all CPUs using currents mm. */ 420 on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true); 421 422 mutex_unlock(&mm->context.lock); 423 } 424 425 static void free_ldt_struct(struct ldt_struct *ldt) 426 { 427 if (likely(!ldt)) 428 return; 429 430 paravirt_free_ldt(ldt->entries, ldt->nr_entries); 431 if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE) 432 vfree_atomic(ldt->entries); 433 else 434 free_page((unsigned long)ldt->entries); 435 kfree(ldt); 436 } 437 438 /* 439 * Called on fork from arch_dup_mmap(). Just copy the current LDT state, 440 * the new task is not running, so nothing can be installed. 441 */ 442 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm) 443 { 444 struct ldt_struct *new_ldt; 445 int retval = 0; 446 447 if (!old_mm) 448 return 0; 449 450 mutex_lock(&old_mm->context.lock); 451 if (!old_mm->context.ldt) 452 goto out_unlock; 453 454 new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries); 455 if (!new_ldt) { 456 retval = -ENOMEM; 457 goto out_unlock; 458 } 459 460 memcpy(new_ldt->entries, old_mm->context.ldt->entries, 461 new_ldt->nr_entries * LDT_ENTRY_SIZE); 462 finalize_ldt_struct(new_ldt); 463 464 retval = map_ldt_struct(mm, new_ldt, 0); 465 if (retval) { 466 free_ldt_pgtables(mm); 467 free_ldt_struct(new_ldt); 468 goto out_unlock; 469 } 470 mm->context.ldt = new_ldt; 471 472 out_unlock: 473 mutex_unlock(&old_mm->context.lock); 474 return retval; 475 } 476 477 /* 478 * No need to lock the MM as we are the last user 479 * 480 * 64bit: Don't touch the LDT register - we're already in the next thread. 481 */ 482 void destroy_context_ldt(struct mm_struct *mm) 483 { 484 free_ldt_struct(mm->context.ldt); 485 mm->context.ldt = NULL; 486 } 487 488 void ldt_arch_exit_mmap(struct mm_struct *mm) 489 { 490 free_ldt_pgtables(mm); 491 } 492 493 static int read_ldt(void __user *ptr, unsigned long bytecount) 494 { 495 struct mm_struct *mm = current->mm; 496 unsigned long entries_size; 497 int retval; 498 499 down_read(&mm->context.ldt_usr_sem); 500 501 if (!mm->context.ldt) { 502 retval = 0; 503 goto out_unlock; 504 } 505 506 if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES) 507 bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES; 508 509 entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE; 510 if (entries_size > bytecount) 511 entries_size = bytecount; 512 513 if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) { 514 retval = -EFAULT; 515 goto out_unlock; 516 } 517 518 if (entries_size != bytecount) { 519 /* Zero-fill the rest and pretend we read bytecount bytes. */ 520 if (clear_user(ptr + entries_size, bytecount - entries_size)) { 521 retval = -EFAULT; 522 goto out_unlock; 523 } 524 } 525 retval = bytecount; 526 527 out_unlock: 528 up_read(&mm->context.ldt_usr_sem); 529 return retval; 530 } 531 532 static int read_default_ldt(void __user *ptr, unsigned long bytecount) 533 { 534 /* CHECKME: Can we use _one_ random number ? */ 535 #ifdef CONFIG_X86_32 536 unsigned long size = 5 * sizeof(struct desc_struct); 537 #else 538 unsigned long size = 128; 539 #endif 540 if (bytecount > size) 541 bytecount = size; 542 if (clear_user(ptr, bytecount)) 543 return -EFAULT; 544 return bytecount; 545 } 546 547 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode) 548 { 549 struct mm_struct *mm = current->mm; 550 struct ldt_struct *new_ldt, *old_ldt; 551 unsigned int old_nr_entries, new_nr_entries; 552 struct user_desc ldt_info; 553 struct desc_struct ldt; 554 int error; 555 556 error = -EINVAL; 557 if (bytecount != sizeof(ldt_info)) 558 goto out; 559 error = -EFAULT; 560 if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info))) 561 goto out; 562 563 error = -EINVAL; 564 if (ldt_info.entry_number >= LDT_ENTRIES) 565 goto out; 566 if (ldt_info.contents == 3) { 567 if (oldmode) 568 goto out; 569 if (ldt_info.seg_not_present == 0) 570 goto out; 571 } 572 573 if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) || 574 LDT_empty(&ldt_info)) { 575 /* The user wants to clear the entry. */ 576 memset(&ldt, 0, sizeof(ldt)); 577 } else { 578 if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) { 579 error = -EINVAL; 580 goto out; 581 } 582 583 fill_ldt(&ldt, &ldt_info); 584 if (oldmode) 585 ldt.avl = 0; 586 } 587 588 if (down_write_killable(&mm->context.ldt_usr_sem)) 589 return -EINTR; 590 591 old_ldt = mm->context.ldt; 592 old_nr_entries = old_ldt ? old_ldt->nr_entries : 0; 593 new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries); 594 595 error = -ENOMEM; 596 new_ldt = alloc_ldt_struct(new_nr_entries); 597 if (!new_ldt) 598 goto out_unlock; 599 600 if (old_ldt) 601 memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE); 602 603 new_ldt->entries[ldt_info.entry_number] = ldt; 604 finalize_ldt_struct(new_ldt); 605 606 /* 607 * If we are using PTI, map the new LDT into the userspace pagetables. 608 * If there is already an LDT, use the other slot so that other CPUs 609 * will continue to use the old LDT until install_ldt() switches 610 * them over to the new LDT. 611 */ 612 error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0); 613 if (error) { 614 /* 615 * This only can fail for the first LDT setup. If an LDT is 616 * already installed then the PTE page is already 617 * populated. Mop up a half populated page table. 618 */ 619 if (!WARN_ON_ONCE(old_ldt)) 620 free_ldt_pgtables(mm); 621 free_ldt_struct(new_ldt); 622 goto out_unlock; 623 } 624 625 install_ldt(mm, new_ldt); 626 unmap_ldt_struct(mm, old_ldt); 627 free_ldt_struct(old_ldt); 628 error = 0; 629 630 out_unlock: 631 up_write(&mm->context.ldt_usr_sem); 632 out: 633 return error; 634 } 635 636 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr , 637 unsigned long , bytecount) 638 { 639 int ret = -ENOSYS; 640 641 switch (func) { 642 case 0: 643 ret = read_ldt(ptr, bytecount); 644 break; 645 case 1: 646 ret = write_ldt(ptr, bytecount, 1); 647 break; 648 case 2: 649 ret = read_default_ldt(ptr, bytecount); 650 break; 651 case 0x11: 652 ret = write_ldt(ptr, bytecount, 0); 653 break; 654 } 655 /* 656 * The SYSCALL_DEFINE() macros give us an 'unsigned long' 657 * return type, but tht ABI for sys_modify_ldt() expects 658 * 'int'. This cast gives us an int-sized value in %rax 659 * for the return code. The 'unsigned' is necessary so 660 * the compiler does not try to sign-extend the negative 661 * return codes into the high half of the register when 662 * taking the value from int->long. 663 */ 664 return (unsigned int)ret; 665 } 666