xref: /openbmc/linux/arch/x86/kernel/ldt.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
4  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
5  * Copyright (C) 2002 Andi Kleen
6  *
7  * This handles calls from both 32bit and 64bit mode.
8  *
9  * Lock order:
10  *	contex.ldt_usr_sem
11  *	  mmap_sem
12  *	    context.lock
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/sched.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/syscalls.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/uaccess.h>
25 
26 #include <asm/ldt.h>
27 #include <asm/tlb.h>
28 #include <asm/desc.h>
29 #include <asm/mmu_context.h>
30 #include <asm/syscalls.h>
31 
32 static void refresh_ldt_segments(void)
33 {
34 #ifdef CONFIG_X86_64
35 	unsigned short sel;
36 
37 	/*
38 	 * Make sure that the cached DS and ES descriptors match the updated
39 	 * LDT.
40 	 */
41 	savesegment(ds, sel);
42 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
43 		loadsegment(ds, sel);
44 
45 	savesegment(es, sel);
46 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
47 		loadsegment(es, sel);
48 #endif
49 }
50 
51 /* context.lock is held by the task which issued the smp function call */
52 static void flush_ldt(void *__mm)
53 {
54 	struct mm_struct *mm = __mm;
55 
56 	if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
57 		return;
58 
59 	load_mm_ldt(mm);
60 
61 	refresh_ldt_segments();
62 }
63 
64 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
65 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
66 {
67 	struct ldt_struct *new_ldt;
68 	unsigned int alloc_size;
69 
70 	if (num_entries > LDT_ENTRIES)
71 		return NULL;
72 
73 	new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL);
74 	if (!new_ldt)
75 		return NULL;
76 
77 	BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
78 	alloc_size = num_entries * LDT_ENTRY_SIZE;
79 
80 	/*
81 	 * Xen is very picky: it requires a page-aligned LDT that has no
82 	 * trailing nonzero bytes in any page that contains LDT descriptors.
83 	 * Keep it simple: zero the whole allocation and never allocate less
84 	 * than PAGE_SIZE.
85 	 */
86 	if (alloc_size > PAGE_SIZE)
87 		new_ldt->entries = vzalloc(alloc_size);
88 	else
89 		new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL);
90 
91 	if (!new_ldt->entries) {
92 		kfree(new_ldt);
93 		return NULL;
94 	}
95 
96 	/* The new LDT isn't aliased for PTI yet. */
97 	new_ldt->slot = -1;
98 
99 	new_ldt->nr_entries = num_entries;
100 	return new_ldt;
101 }
102 
103 #ifdef CONFIG_PAGE_TABLE_ISOLATION
104 
105 static void do_sanity_check(struct mm_struct *mm,
106 			    bool had_kernel_mapping,
107 			    bool had_user_mapping)
108 {
109 	if (mm->context.ldt) {
110 		/*
111 		 * We already had an LDT.  The top-level entry should already
112 		 * have been allocated and synchronized with the usermode
113 		 * tables.
114 		 */
115 		WARN_ON(!had_kernel_mapping);
116 		if (static_cpu_has(X86_FEATURE_PTI))
117 			WARN_ON(!had_user_mapping);
118 	} else {
119 		/*
120 		 * This is the first time we're mapping an LDT for this process.
121 		 * Sync the pgd to the usermode tables.
122 		 */
123 		WARN_ON(had_kernel_mapping);
124 		if (static_cpu_has(X86_FEATURE_PTI))
125 			WARN_ON(had_user_mapping);
126 	}
127 }
128 
129 #ifdef CONFIG_X86_PAE
130 
131 static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va)
132 {
133 	p4d_t *p4d;
134 	pud_t *pud;
135 
136 	if (pgd->pgd == 0)
137 		return NULL;
138 
139 	p4d = p4d_offset(pgd, va);
140 	if (p4d_none(*p4d))
141 		return NULL;
142 
143 	pud = pud_offset(p4d, va);
144 	if (pud_none(*pud))
145 		return NULL;
146 
147 	return pmd_offset(pud, va);
148 }
149 
150 static void map_ldt_struct_to_user(struct mm_struct *mm)
151 {
152 	pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
153 	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
154 	pmd_t *k_pmd, *u_pmd;
155 
156 	k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
157 	u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
158 
159 	if (static_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
160 		set_pmd(u_pmd, *k_pmd);
161 }
162 
163 static void sanity_check_ldt_mapping(struct mm_struct *mm)
164 {
165 	pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
166 	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
167 	bool had_kernel, had_user;
168 	pmd_t *k_pmd, *u_pmd;
169 
170 	k_pmd      = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
171 	u_pmd      = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
172 	had_kernel = (k_pmd->pmd != 0);
173 	had_user   = (u_pmd->pmd != 0);
174 
175 	do_sanity_check(mm, had_kernel, had_user);
176 }
177 
178 #else /* !CONFIG_X86_PAE */
179 
180 static void map_ldt_struct_to_user(struct mm_struct *mm)
181 {
182 	pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
183 
184 	if (static_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
185 		set_pgd(kernel_to_user_pgdp(pgd), *pgd);
186 }
187 
188 static void sanity_check_ldt_mapping(struct mm_struct *mm)
189 {
190 	pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
191 	bool had_kernel = (pgd->pgd != 0);
192 	bool had_user   = (kernel_to_user_pgdp(pgd)->pgd != 0);
193 
194 	do_sanity_check(mm, had_kernel, had_user);
195 }
196 
197 #endif /* CONFIG_X86_PAE */
198 
199 /*
200  * If PTI is enabled, this maps the LDT into the kernelmode and
201  * usermode tables for the given mm.
202  *
203  * There is no corresponding unmap function.  Even if the LDT is freed, we
204  * leave the PTEs around until the slot is reused or the mm is destroyed.
205  * This is harmless: the LDT is always in ordinary memory, and no one will
206  * access the freed slot.
207  *
208  * If we wanted to unmap freed LDTs, we'd also need to do a flush to make
209  * it useful, and the flush would slow down modify_ldt().
210  */
211 static int
212 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
213 {
214 	unsigned long va;
215 	bool is_vmalloc;
216 	spinlock_t *ptl;
217 	pgd_t *pgd;
218 	int i;
219 
220 	if (!static_cpu_has(X86_FEATURE_PTI))
221 		return 0;
222 
223 	/*
224 	 * Any given ldt_struct should have map_ldt_struct() called at most
225 	 * once.
226 	 */
227 	WARN_ON(ldt->slot != -1);
228 
229 	/* Check if the current mappings are sane */
230 	sanity_check_ldt_mapping(mm);
231 
232 	/*
233 	 * Did we already have the top level entry allocated?  We can't
234 	 * use pgd_none() for this because it doens't do anything on
235 	 * 4-level page table kernels.
236 	 */
237 	pgd = pgd_offset(mm, LDT_BASE_ADDR);
238 
239 	is_vmalloc = is_vmalloc_addr(ldt->entries);
240 
241 	for (i = 0; i * PAGE_SIZE < ldt->nr_entries * LDT_ENTRY_SIZE; i++) {
242 		unsigned long offset = i << PAGE_SHIFT;
243 		const void *src = (char *)ldt->entries + offset;
244 		unsigned long pfn;
245 		pgprot_t pte_prot;
246 		pte_t pte, *ptep;
247 
248 		va = (unsigned long)ldt_slot_va(slot) + offset;
249 		pfn = is_vmalloc ? vmalloc_to_pfn(src) :
250 			page_to_pfn(virt_to_page(src));
251 		/*
252 		 * Treat the PTI LDT range as a *userspace* range.
253 		 * get_locked_pte() will allocate all needed pagetables
254 		 * and account for them in this mm.
255 		 */
256 		ptep = get_locked_pte(mm, va, &ptl);
257 		if (!ptep)
258 			return -ENOMEM;
259 		/*
260 		 * Map it RO so the easy to find address is not a primary
261 		 * target via some kernel interface which misses a
262 		 * permission check.
263 		 */
264 		pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
265 		/* Filter out unsuppored __PAGE_KERNEL* bits: */
266 		pgprot_val(pte_prot) &= __supported_pte_mask;
267 		pte = pfn_pte(pfn, pte_prot);
268 		set_pte_at(mm, va, ptep, pte);
269 		pte_unmap_unlock(ptep, ptl);
270 	}
271 
272 	/* Propagate LDT mapping to the user page-table */
273 	map_ldt_struct_to_user(mm);
274 
275 	va = (unsigned long)ldt_slot_va(slot);
276 	flush_tlb_mm_range(mm, va, va + LDT_SLOT_STRIDE, 0);
277 
278 	ldt->slot = slot;
279 	return 0;
280 }
281 
282 #else /* !CONFIG_PAGE_TABLE_ISOLATION */
283 
284 static int
285 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
286 {
287 	return 0;
288 }
289 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
290 
291 static void free_ldt_pgtables(struct mm_struct *mm)
292 {
293 #ifdef CONFIG_PAGE_TABLE_ISOLATION
294 	struct mmu_gather tlb;
295 	unsigned long start = LDT_BASE_ADDR;
296 	unsigned long end = LDT_END_ADDR;
297 
298 	if (!static_cpu_has(X86_FEATURE_PTI))
299 		return;
300 
301 	tlb_gather_mmu(&tlb, mm, start, end);
302 	free_pgd_range(&tlb, start, end, start, end);
303 	tlb_finish_mmu(&tlb, start, end);
304 #endif
305 }
306 
307 /* After calling this, the LDT is immutable. */
308 static void finalize_ldt_struct(struct ldt_struct *ldt)
309 {
310 	paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
311 }
312 
313 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
314 {
315 	mutex_lock(&mm->context.lock);
316 
317 	/* Synchronizes with READ_ONCE in load_mm_ldt. */
318 	smp_store_release(&mm->context.ldt, ldt);
319 
320 	/* Activate the LDT for all CPUs using currents mm. */
321 	on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
322 
323 	mutex_unlock(&mm->context.lock);
324 }
325 
326 static void free_ldt_struct(struct ldt_struct *ldt)
327 {
328 	if (likely(!ldt))
329 		return;
330 
331 	paravirt_free_ldt(ldt->entries, ldt->nr_entries);
332 	if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
333 		vfree_atomic(ldt->entries);
334 	else
335 		free_page((unsigned long)ldt->entries);
336 	kfree(ldt);
337 }
338 
339 /*
340  * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
341  * the new task is not running, so nothing can be installed.
342  */
343 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
344 {
345 	struct ldt_struct *new_ldt;
346 	int retval = 0;
347 
348 	if (!old_mm)
349 		return 0;
350 
351 	mutex_lock(&old_mm->context.lock);
352 	if (!old_mm->context.ldt)
353 		goto out_unlock;
354 
355 	new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
356 	if (!new_ldt) {
357 		retval = -ENOMEM;
358 		goto out_unlock;
359 	}
360 
361 	memcpy(new_ldt->entries, old_mm->context.ldt->entries,
362 	       new_ldt->nr_entries * LDT_ENTRY_SIZE);
363 	finalize_ldt_struct(new_ldt);
364 
365 	retval = map_ldt_struct(mm, new_ldt, 0);
366 	if (retval) {
367 		free_ldt_pgtables(mm);
368 		free_ldt_struct(new_ldt);
369 		goto out_unlock;
370 	}
371 	mm->context.ldt = new_ldt;
372 
373 out_unlock:
374 	mutex_unlock(&old_mm->context.lock);
375 	return retval;
376 }
377 
378 /*
379  * No need to lock the MM as we are the last user
380  *
381  * 64bit: Don't touch the LDT register - we're already in the next thread.
382  */
383 void destroy_context_ldt(struct mm_struct *mm)
384 {
385 	free_ldt_struct(mm->context.ldt);
386 	mm->context.ldt = NULL;
387 }
388 
389 void ldt_arch_exit_mmap(struct mm_struct *mm)
390 {
391 	free_ldt_pgtables(mm);
392 }
393 
394 static int read_ldt(void __user *ptr, unsigned long bytecount)
395 {
396 	struct mm_struct *mm = current->mm;
397 	unsigned long entries_size;
398 	int retval;
399 
400 	down_read(&mm->context.ldt_usr_sem);
401 
402 	if (!mm->context.ldt) {
403 		retval = 0;
404 		goto out_unlock;
405 	}
406 
407 	if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
408 		bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
409 
410 	entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
411 	if (entries_size > bytecount)
412 		entries_size = bytecount;
413 
414 	if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
415 		retval = -EFAULT;
416 		goto out_unlock;
417 	}
418 
419 	if (entries_size != bytecount) {
420 		/* Zero-fill the rest and pretend we read bytecount bytes. */
421 		if (clear_user(ptr + entries_size, bytecount - entries_size)) {
422 			retval = -EFAULT;
423 			goto out_unlock;
424 		}
425 	}
426 	retval = bytecount;
427 
428 out_unlock:
429 	up_read(&mm->context.ldt_usr_sem);
430 	return retval;
431 }
432 
433 static int read_default_ldt(void __user *ptr, unsigned long bytecount)
434 {
435 	/* CHECKME: Can we use _one_ random number ? */
436 #ifdef CONFIG_X86_32
437 	unsigned long size = 5 * sizeof(struct desc_struct);
438 #else
439 	unsigned long size = 128;
440 #endif
441 	if (bytecount > size)
442 		bytecount = size;
443 	if (clear_user(ptr, bytecount))
444 		return -EFAULT;
445 	return bytecount;
446 }
447 
448 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
449 {
450 	struct mm_struct *mm = current->mm;
451 	struct ldt_struct *new_ldt, *old_ldt;
452 	unsigned int old_nr_entries, new_nr_entries;
453 	struct user_desc ldt_info;
454 	struct desc_struct ldt;
455 	int error;
456 
457 	error = -EINVAL;
458 	if (bytecount != sizeof(ldt_info))
459 		goto out;
460 	error = -EFAULT;
461 	if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
462 		goto out;
463 
464 	error = -EINVAL;
465 	if (ldt_info.entry_number >= LDT_ENTRIES)
466 		goto out;
467 	if (ldt_info.contents == 3) {
468 		if (oldmode)
469 			goto out;
470 		if (ldt_info.seg_not_present == 0)
471 			goto out;
472 	}
473 
474 	if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
475 	    LDT_empty(&ldt_info)) {
476 		/* The user wants to clear the entry. */
477 		memset(&ldt, 0, sizeof(ldt));
478 	} else {
479 		if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) {
480 			error = -EINVAL;
481 			goto out;
482 		}
483 
484 		fill_ldt(&ldt, &ldt_info);
485 		if (oldmode)
486 			ldt.avl = 0;
487 	}
488 
489 	if (down_write_killable(&mm->context.ldt_usr_sem))
490 		return -EINTR;
491 
492 	old_ldt       = mm->context.ldt;
493 	old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
494 	new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
495 
496 	error = -ENOMEM;
497 	new_ldt = alloc_ldt_struct(new_nr_entries);
498 	if (!new_ldt)
499 		goto out_unlock;
500 
501 	if (old_ldt)
502 		memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
503 
504 	new_ldt->entries[ldt_info.entry_number] = ldt;
505 	finalize_ldt_struct(new_ldt);
506 
507 	/*
508 	 * If we are using PTI, map the new LDT into the userspace pagetables.
509 	 * If there is already an LDT, use the other slot so that other CPUs
510 	 * will continue to use the old LDT until install_ldt() switches
511 	 * them over to the new LDT.
512 	 */
513 	error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
514 	if (error) {
515 		/*
516 		 * This only can fail for the first LDT setup. If an LDT is
517 		 * already installed then the PTE page is already
518 		 * populated. Mop up a half populated page table.
519 		 */
520 		if (!WARN_ON_ONCE(old_ldt))
521 			free_ldt_pgtables(mm);
522 		free_ldt_struct(new_ldt);
523 		goto out_unlock;
524 	}
525 
526 	install_ldt(mm, new_ldt);
527 	free_ldt_struct(old_ldt);
528 	error = 0;
529 
530 out_unlock:
531 	up_write(&mm->context.ldt_usr_sem);
532 out:
533 	return error;
534 }
535 
536 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
537 		unsigned long , bytecount)
538 {
539 	int ret = -ENOSYS;
540 
541 	switch (func) {
542 	case 0:
543 		ret = read_ldt(ptr, bytecount);
544 		break;
545 	case 1:
546 		ret = write_ldt(ptr, bytecount, 1);
547 		break;
548 	case 2:
549 		ret = read_default_ldt(ptr, bytecount);
550 		break;
551 	case 0x11:
552 		ret = write_ldt(ptr, bytecount, 0);
553 		break;
554 	}
555 	/*
556 	 * The SYSCALL_DEFINE() macros give us an 'unsigned long'
557 	 * return type, but tht ABI for sys_modify_ldt() expects
558 	 * 'int'.  This cast gives us an int-sized value in %rax
559 	 * for the return code.  The 'unsigned' is necessary so
560 	 * the compiler does not try to sign-extend the negative
561 	 * return codes into the high half of the register when
562 	 * taking the value from int->long.
563 	 */
564 	return (unsigned int)ret;
565 }
566