1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds 4 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> 5 * Copyright (C) 2002 Andi Kleen 6 * 7 * This handles calls from both 32bit and 64bit mode. 8 * 9 * Lock order: 10 * contex.ldt_usr_sem 11 * mmap_lock 12 * context.lock 13 */ 14 15 #include <linux/errno.h> 16 #include <linux/gfp.h> 17 #include <linux/sched.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/syscalls.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/uaccess.h> 25 26 #include <asm/ldt.h> 27 #include <asm/tlb.h> 28 #include <asm/desc.h> 29 #include <asm/mmu_context.h> 30 #include <asm/pgtable_areas.h> 31 32 /* This is a multiple of PAGE_SIZE. */ 33 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE) 34 35 static inline void *ldt_slot_va(int slot) 36 { 37 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot); 38 } 39 40 void load_mm_ldt(struct mm_struct *mm) 41 { 42 struct ldt_struct *ldt; 43 44 /* READ_ONCE synchronizes with smp_store_release */ 45 ldt = READ_ONCE(mm->context.ldt); 46 47 /* 48 * Any change to mm->context.ldt is followed by an IPI to all 49 * CPUs with the mm active. The LDT will not be freed until 50 * after the IPI is handled by all such CPUs. This means that, 51 * if the ldt_struct changes before we return, the values we see 52 * will be safe, and the new values will be loaded before we run 53 * any user code. 54 * 55 * NB: don't try to convert this to use RCU without extreme care. 56 * We would still need IRQs off, because we don't want to change 57 * the local LDT after an IPI loaded a newer value than the one 58 * that we can see. 59 */ 60 61 if (unlikely(ldt)) { 62 if (static_cpu_has(X86_FEATURE_PTI)) { 63 if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) { 64 /* 65 * Whoops -- either the new LDT isn't mapped 66 * (if slot == -1) or is mapped into a bogus 67 * slot (if slot > 1). 68 */ 69 clear_LDT(); 70 return; 71 } 72 73 /* 74 * If page table isolation is enabled, ldt->entries 75 * will not be mapped in the userspace pagetables. 76 * Tell the CPU to access the LDT through the alias 77 * at ldt_slot_va(ldt->slot). 78 */ 79 set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries); 80 } else { 81 set_ldt(ldt->entries, ldt->nr_entries); 82 } 83 } else { 84 clear_LDT(); 85 } 86 } 87 88 void switch_ldt(struct mm_struct *prev, struct mm_struct *next) 89 { 90 /* 91 * Load the LDT if either the old or new mm had an LDT. 92 * 93 * An mm will never go from having an LDT to not having an LDT. Two 94 * mms never share an LDT, so we don't gain anything by checking to 95 * see whether the LDT changed. There's also no guarantee that 96 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL, 97 * then prev->context.ldt will also be non-NULL. 98 * 99 * If we really cared, we could optimize the case where prev == next 100 * and we're exiting lazy mode. Most of the time, if this happens, 101 * we don't actually need to reload LDTR, but modify_ldt() is mostly 102 * used by legacy code and emulators where we don't need this level of 103 * performance. 104 * 105 * This uses | instead of || because it generates better code. 106 */ 107 if (unlikely((unsigned long)prev->context.ldt | 108 (unsigned long)next->context.ldt)) 109 load_mm_ldt(next); 110 111 DEBUG_LOCKS_WARN_ON(preemptible()); 112 } 113 114 static void refresh_ldt_segments(void) 115 { 116 #ifdef CONFIG_X86_64 117 unsigned short sel; 118 119 /* 120 * Make sure that the cached DS and ES descriptors match the updated 121 * LDT. 122 */ 123 savesegment(ds, sel); 124 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) 125 loadsegment(ds, sel); 126 127 savesegment(es, sel); 128 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) 129 loadsegment(es, sel); 130 #endif 131 } 132 133 /* context.lock is held by the task which issued the smp function call */ 134 static void flush_ldt(void *__mm) 135 { 136 struct mm_struct *mm = __mm; 137 138 if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm) 139 return; 140 141 load_mm_ldt(mm); 142 143 refresh_ldt_segments(); 144 } 145 146 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */ 147 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries) 148 { 149 struct ldt_struct *new_ldt; 150 unsigned int alloc_size; 151 152 if (num_entries > LDT_ENTRIES) 153 return NULL; 154 155 new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL); 156 if (!new_ldt) 157 return NULL; 158 159 BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct)); 160 alloc_size = num_entries * LDT_ENTRY_SIZE; 161 162 /* 163 * Xen is very picky: it requires a page-aligned LDT that has no 164 * trailing nonzero bytes in any page that contains LDT descriptors. 165 * Keep it simple: zero the whole allocation and never allocate less 166 * than PAGE_SIZE. 167 */ 168 if (alloc_size > PAGE_SIZE) 169 new_ldt->entries = vzalloc(alloc_size); 170 else 171 new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL); 172 173 if (!new_ldt->entries) { 174 kfree(new_ldt); 175 return NULL; 176 } 177 178 /* The new LDT isn't aliased for PTI yet. */ 179 new_ldt->slot = -1; 180 181 new_ldt->nr_entries = num_entries; 182 return new_ldt; 183 } 184 185 #ifdef CONFIG_PAGE_TABLE_ISOLATION 186 187 static void do_sanity_check(struct mm_struct *mm, 188 bool had_kernel_mapping, 189 bool had_user_mapping) 190 { 191 if (mm->context.ldt) { 192 /* 193 * We already had an LDT. The top-level entry should already 194 * have been allocated and synchronized with the usermode 195 * tables. 196 */ 197 WARN_ON(!had_kernel_mapping); 198 if (boot_cpu_has(X86_FEATURE_PTI)) 199 WARN_ON(!had_user_mapping); 200 } else { 201 /* 202 * This is the first time we're mapping an LDT for this process. 203 * Sync the pgd to the usermode tables. 204 */ 205 WARN_ON(had_kernel_mapping); 206 if (boot_cpu_has(X86_FEATURE_PTI)) 207 WARN_ON(had_user_mapping); 208 } 209 } 210 211 #ifdef CONFIG_X86_PAE 212 213 static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va) 214 { 215 p4d_t *p4d; 216 pud_t *pud; 217 218 if (pgd->pgd == 0) 219 return NULL; 220 221 p4d = p4d_offset(pgd, va); 222 if (p4d_none(*p4d)) 223 return NULL; 224 225 pud = pud_offset(p4d, va); 226 if (pud_none(*pud)) 227 return NULL; 228 229 return pmd_offset(pud, va); 230 } 231 232 static void map_ldt_struct_to_user(struct mm_struct *mm) 233 { 234 pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR); 235 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); 236 pmd_t *k_pmd, *u_pmd; 237 238 k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR); 239 u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR); 240 241 if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) 242 set_pmd(u_pmd, *k_pmd); 243 } 244 245 static void sanity_check_ldt_mapping(struct mm_struct *mm) 246 { 247 pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR); 248 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); 249 bool had_kernel, had_user; 250 pmd_t *k_pmd, *u_pmd; 251 252 k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR); 253 u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR); 254 had_kernel = (k_pmd->pmd != 0); 255 had_user = (u_pmd->pmd != 0); 256 257 do_sanity_check(mm, had_kernel, had_user); 258 } 259 260 #else /* !CONFIG_X86_PAE */ 261 262 static void map_ldt_struct_to_user(struct mm_struct *mm) 263 { 264 pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); 265 266 if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) 267 set_pgd(kernel_to_user_pgdp(pgd), *pgd); 268 } 269 270 static void sanity_check_ldt_mapping(struct mm_struct *mm) 271 { 272 pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); 273 bool had_kernel = (pgd->pgd != 0); 274 bool had_user = (kernel_to_user_pgdp(pgd)->pgd != 0); 275 276 do_sanity_check(mm, had_kernel, had_user); 277 } 278 279 #endif /* CONFIG_X86_PAE */ 280 281 /* 282 * If PTI is enabled, this maps the LDT into the kernelmode and 283 * usermode tables for the given mm. 284 */ 285 static int 286 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) 287 { 288 unsigned long va; 289 bool is_vmalloc; 290 spinlock_t *ptl; 291 int i, nr_pages; 292 293 if (!boot_cpu_has(X86_FEATURE_PTI)) 294 return 0; 295 296 /* 297 * Any given ldt_struct should have map_ldt_struct() called at most 298 * once. 299 */ 300 WARN_ON(ldt->slot != -1); 301 302 /* Check if the current mappings are sane */ 303 sanity_check_ldt_mapping(mm); 304 305 is_vmalloc = is_vmalloc_addr(ldt->entries); 306 307 nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); 308 309 for (i = 0; i < nr_pages; i++) { 310 unsigned long offset = i << PAGE_SHIFT; 311 const void *src = (char *)ldt->entries + offset; 312 unsigned long pfn; 313 pgprot_t pte_prot; 314 pte_t pte, *ptep; 315 316 va = (unsigned long)ldt_slot_va(slot) + offset; 317 pfn = is_vmalloc ? vmalloc_to_pfn(src) : 318 page_to_pfn(virt_to_page(src)); 319 /* 320 * Treat the PTI LDT range as a *userspace* range. 321 * get_locked_pte() will allocate all needed pagetables 322 * and account for them in this mm. 323 */ 324 ptep = get_locked_pte(mm, va, &ptl); 325 if (!ptep) 326 return -ENOMEM; 327 /* 328 * Map it RO so the easy to find address is not a primary 329 * target via some kernel interface which misses a 330 * permission check. 331 */ 332 pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL); 333 /* Filter out unsuppored __PAGE_KERNEL* bits: */ 334 pgprot_val(pte_prot) &= __supported_pte_mask; 335 pte = pfn_pte(pfn, pte_prot); 336 set_pte_at(mm, va, ptep, pte); 337 pte_unmap_unlock(ptep, ptl); 338 } 339 340 /* Propagate LDT mapping to the user page-table */ 341 map_ldt_struct_to_user(mm); 342 343 ldt->slot = slot; 344 return 0; 345 } 346 347 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) 348 { 349 unsigned long va; 350 int i, nr_pages; 351 352 if (!ldt) 353 return; 354 355 /* LDT map/unmap is only required for PTI */ 356 if (!boot_cpu_has(X86_FEATURE_PTI)) 357 return; 358 359 nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); 360 361 for (i = 0; i < nr_pages; i++) { 362 unsigned long offset = i << PAGE_SHIFT; 363 spinlock_t *ptl; 364 pte_t *ptep; 365 366 va = (unsigned long)ldt_slot_va(ldt->slot) + offset; 367 ptep = get_locked_pte(mm, va, &ptl); 368 pte_clear(mm, va, ptep); 369 pte_unmap_unlock(ptep, ptl); 370 } 371 372 va = (unsigned long)ldt_slot_va(ldt->slot); 373 flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false); 374 } 375 376 #else /* !CONFIG_PAGE_TABLE_ISOLATION */ 377 378 static int 379 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) 380 { 381 return 0; 382 } 383 384 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) 385 { 386 } 387 #endif /* CONFIG_PAGE_TABLE_ISOLATION */ 388 389 static void free_ldt_pgtables(struct mm_struct *mm) 390 { 391 #ifdef CONFIG_PAGE_TABLE_ISOLATION 392 struct mmu_gather tlb; 393 unsigned long start = LDT_BASE_ADDR; 394 unsigned long end = LDT_END_ADDR; 395 396 if (!boot_cpu_has(X86_FEATURE_PTI)) 397 return; 398 399 tlb_gather_mmu(&tlb, mm, start, end); 400 free_pgd_range(&tlb, start, end, start, end); 401 tlb_finish_mmu(&tlb, start, end); 402 #endif 403 } 404 405 /* After calling this, the LDT is immutable. */ 406 static void finalize_ldt_struct(struct ldt_struct *ldt) 407 { 408 paravirt_alloc_ldt(ldt->entries, ldt->nr_entries); 409 } 410 411 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt) 412 { 413 mutex_lock(&mm->context.lock); 414 415 /* Synchronizes with READ_ONCE in load_mm_ldt. */ 416 smp_store_release(&mm->context.ldt, ldt); 417 418 /* Activate the LDT for all CPUs using currents mm. */ 419 on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true); 420 421 mutex_unlock(&mm->context.lock); 422 } 423 424 static void free_ldt_struct(struct ldt_struct *ldt) 425 { 426 if (likely(!ldt)) 427 return; 428 429 paravirt_free_ldt(ldt->entries, ldt->nr_entries); 430 if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE) 431 vfree_atomic(ldt->entries); 432 else 433 free_page((unsigned long)ldt->entries); 434 kfree(ldt); 435 } 436 437 /* 438 * Called on fork from arch_dup_mmap(). Just copy the current LDT state, 439 * the new task is not running, so nothing can be installed. 440 */ 441 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm) 442 { 443 struct ldt_struct *new_ldt; 444 int retval = 0; 445 446 if (!old_mm) 447 return 0; 448 449 mutex_lock(&old_mm->context.lock); 450 if (!old_mm->context.ldt) 451 goto out_unlock; 452 453 new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries); 454 if (!new_ldt) { 455 retval = -ENOMEM; 456 goto out_unlock; 457 } 458 459 memcpy(new_ldt->entries, old_mm->context.ldt->entries, 460 new_ldt->nr_entries * LDT_ENTRY_SIZE); 461 finalize_ldt_struct(new_ldt); 462 463 retval = map_ldt_struct(mm, new_ldt, 0); 464 if (retval) { 465 free_ldt_pgtables(mm); 466 free_ldt_struct(new_ldt); 467 goto out_unlock; 468 } 469 mm->context.ldt = new_ldt; 470 471 out_unlock: 472 mutex_unlock(&old_mm->context.lock); 473 return retval; 474 } 475 476 /* 477 * No need to lock the MM as we are the last user 478 * 479 * 64bit: Don't touch the LDT register - we're already in the next thread. 480 */ 481 void destroy_context_ldt(struct mm_struct *mm) 482 { 483 free_ldt_struct(mm->context.ldt); 484 mm->context.ldt = NULL; 485 } 486 487 void ldt_arch_exit_mmap(struct mm_struct *mm) 488 { 489 free_ldt_pgtables(mm); 490 } 491 492 static int read_ldt(void __user *ptr, unsigned long bytecount) 493 { 494 struct mm_struct *mm = current->mm; 495 unsigned long entries_size; 496 int retval; 497 498 down_read(&mm->context.ldt_usr_sem); 499 500 if (!mm->context.ldt) { 501 retval = 0; 502 goto out_unlock; 503 } 504 505 if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES) 506 bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES; 507 508 entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE; 509 if (entries_size > bytecount) 510 entries_size = bytecount; 511 512 if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) { 513 retval = -EFAULT; 514 goto out_unlock; 515 } 516 517 if (entries_size != bytecount) { 518 /* Zero-fill the rest and pretend we read bytecount bytes. */ 519 if (clear_user(ptr + entries_size, bytecount - entries_size)) { 520 retval = -EFAULT; 521 goto out_unlock; 522 } 523 } 524 retval = bytecount; 525 526 out_unlock: 527 up_read(&mm->context.ldt_usr_sem); 528 return retval; 529 } 530 531 static int read_default_ldt(void __user *ptr, unsigned long bytecount) 532 { 533 /* CHECKME: Can we use _one_ random number ? */ 534 #ifdef CONFIG_X86_32 535 unsigned long size = 5 * sizeof(struct desc_struct); 536 #else 537 unsigned long size = 128; 538 #endif 539 if (bytecount > size) 540 bytecount = size; 541 if (clear_user(ptr, bytecount)) 542 return -EFAULT; 543 return bytecount; 544 } 545 546 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode) 547 { 548 struct mm_struct *mm = current->mm; 549 struct ldt_struct *new_ldt, *old_ldt; 550 unsigned int old_nr_entries, new_nr_entries; 551 struct user_desc ldt_info; 552 struct desc_struct ldt; 553 int error; 554 555 error = -EINVAL; 556 if (bytecount != sizeof(ldt_info)) 557 goto out; 558 error = -EFAULT; 559 if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info))) 560 goto out; 561 562 error = -EINVAL; 563 if (ldt_info.entry_number >= LDT_ENTRIES) 564 goto out; 565 if (ldt_info.contents == 3) { 566 if (oldmode) 567 goto out; 568 if (ldt_info.seg_not_present == 0) 569 goto out; 570 } 571 572 if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) || 573 LDT_empty(&ldt_info)) { 574 /* The user wants to clear the entry. */ 575 memset(&ldt, 0, sizeof(ldt)); 576 } else { 577 if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) { 578 error = -EINVAL; 579 goto out; 580 } 581 582 fill_ldt(&ldt, &ldt_info); 583 if (oldmode) 584 ldt.avl = 0; 585 } 586 587 if (down_write_killable(&mm->context.ldt_usr_sem)) 588 return -EINTR; 589 590 old_ldt = mm->context.ldt; 591 old_nr_entries = old_ldt ? old_ldt->nr_entries : 0; 592 new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries); 593 594 error = -ENOMEM; 595 new_ldt = alloc_ldt_struct(new_nr_entries); 596 if (!new_ldt) 597 goto out_unlock; 598 599 if (old_ldt) 600 memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE); 601 602 new_ldt->entries[ldt_info.entry_number] = ldt; 603 finalize_ldt_struct(new_ldt); 604 605 /* 606 * If we are using PTI, map the new LDT into the userspace pagetables. 607 * If there is already an LDT, use the other slot so that other CPUs 608 * will continue to use the old LDT until install_ldt() switches 609 * them over to the new LDT. 610 */ 611 error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0); 612 if (error) { 613 /* 614 * This only can fail for the first LDT setup. If an LDT is 615 * already installed then the PTE page is already 616 * populated. Mop up a half populated page table. 617 */ 618 if (!WARN_ON_ONCE(old_ldt)) 619 free_ldt_pgtables(mm); 620 free_ldt_struct(new_ldt); 621 goto out_unlock; 622 } 623 624 install_ldt(mm, new_ldt); 625 unmap_ldt_struct(mm, old_ldt); 626 free_ldt_struct(old_ldt); 627 error = 0; 628 629 out_unlock: 630 up_write(&mm->context.ldt_usr_sem); 631 out: 632 return error; 633 } 634 635 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr , 636 unsigned long , bytecount) 637 { 638 int ret = -ENOSYS; 639 640 switch (func) { 641 case 0: 642 ret = read_ldt(ptr, bytecount); 643 break; 644 case 1: 645 ret = write_ldt(ptr, bytecount, 1); 646 break; 647 case 2: 648 ret = read_default_ldt(ptr, bytecount); 649 break; 650 case 0x11: 651 ret = write_ldt(ptr, bytecount, 0); 652 break; 653 } 654 /* 655 * The SYSCALL_DEFINE() macros give us an 'unsigned long' 656 * return type, but tht ABI for sys_modify_ldt() expects 657 * 'int'. This cast gives us an int-sized value in %rax 658 * for the return code. The 'unsigned' is necessary so 659 * the compiler does not try to sign-extend the negative 660 * return codes into the high half of the register when 661 * taking the value from int->long. 662 */ 663 return (unsigned int)ret; 664 } 665