1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds 4 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> 5 * Copyright (C) 2002 Andi Kleen 6 * 7 * This handles calls from both 32bit and 64bit mode. 8 * 9 * Lock order: 10 * contex.ldt_usr_sem 11 * mmap_sem 12 * context.lock 13 */ 14 15 #include <linux/errno.h> 16 #include <linux/gfp.h> 17 #include <linux/sched.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/syscalls.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/uaccess.h> 25 26 #include <asm/ldt.h> 27 #include <asm/tlb.h> 28 #include <asm/desc.h> 29 #include <asm/mmu_context.h> 30 #include <asm/syscalls.h> 31 32 static void refresh_ldt_segments(void) 33 { 34 #ifdef CONFIG_X86_64 35 unsigned short sel; 36 37 /* 38 * Make sure that the cached DS and ES descriptors match the updated 39 * LDT. 40 */ 41 savesegment(ds, sel); 42 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) 43 loadsegment(ds, sel); 44 45 savesegment(es, sel); 46 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) 47 loadsegment(es, sel); 48 #endif 49 } 50 51 /* context.lock is held by the task which issued the smp function call */ 52 static void flush_ldt(void *__mm) 53 { 54 struct mm_struct *mm = __mm; 55 56 if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm) 57 return; 58 59 load_mm_ldt(mm); 60 61 refresh_ldt_segments(); 62 } 63 64 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */ 65 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries) 66 { 67 struct ldt_struct *new_ldt; 68 unsigned int alloc_size; 69 70 if (num_entries > LDT_ENTRIES) 71 return NULL; 72 73 new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL); 74 if (!new_ldt) 75 return NULL; 76 77 BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct)); 78 alloc_size = num_entries * LDT_ENTRY_SIZE; 79 80 /* 81 * Xen is very picky: it requires a page-aligned LDT that has no 82 * trailing nonzero bytes in any page that contains LDT descriptors. 83 * Keep it simple: zero the whole allocation and never allocate less 84 * than PAGE_SIZE. 85 */ 86 if (alloc_size > PAGE_SIZE) 87 new_ldt->entries = vzalloc(alloc_size); 88 else 89 new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL); 90 91 if (!new_ldt->entries) { 92 kfree(new_ldt); 93 return NULL; 94 } 95 96 /* The new LDT isn't aliased for PTI yet. */ 97 new_ldt->slot = -1; 98 99 new_ldt->nr_entries = num_entries; 100 return new_ldt; 101 } 102 103 /* 104 * If PTI is enabled, this maps the LDT into the kernelmode and 105 * usermode tables for the given mm. 106 * 107 * There is no corresponding unmap function. Even if the LDT is freed, we 108 * leave the PTEs around until the slot is reused or the mm is destroyed. 109 * This is harmless: the LDT is always in ordinary memory, and no one will 110 * access the freed slot. 111 * 112 * If we wanted to unmap freed LDTs, we'd also need to do a flush to make 113 * it useful, and the flush would slow down modify_ldt(). 114 */ 115 static int 116 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) 117 { 118 #ifdef CONFIG_PAGE_TABLE_ISOLATION 119 bool is_vmalloc, had_top_level_entry; 120 unsigned long va; 121 spinlock_t *ptl; 122 pgd_t *pgd; 123 int i; 124 125 if (!static_cpu_has(X86_FEATURE_PTI)) 126 return 0; 127 128 /* 129 * Any given ldt_struct should have map_ldt_struct() called at most 130 * once. 131 */ 132 WARN_ON(ldt->slot != -1); 133 134 /* 135 * Did we already have the top level entry allocated? We can't 136 * use pgd_none() for this because it doens't do anything on 137 * 4-level page table kernels. 138 */ 139 pgd = pgd_offset(mm, LDT_BASE_ADDR); 140 had_top_level_entry = (pgd->pgd != 0); 141 142 is_vmalloc = is_vmalloc_addr(ldt->entries); 143 144 for (i = 0; i * PAGE_SIZE < ldt->nr_entries * LDT_ENTRY_SIZE; i++) { 145 unsigned long offset = i << PAGE_SHIFT; 146 const void *src = (char *)ldt->entries + offset; 147 unsigned long pfn; 148 pte_t pte, *ptep; 149 150 va = (unsigned long)ldt_slot_va(slot) + offset; 151 pfn = is_vmalloc ? vmalloc_to_pfn(src) : 152 page_to_pfn(virt_to_page(src)); 153 /* 154 * Treat the PTI LDT range as a *userspace* range. 155 * get_locked_pte() will allocate all needed pagetables 156 * and account for them in this mm. 157 */ 158 ptep = get_locked_pte(mm, va, &ptl); 159 if (!ptep) 160 return -ENOMEM; 161 /* 162 * Map it RO so the easy to find address is not a primary 163 * target via some kernel interface which misses a 164 * permission check. 165 */ 166 pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL)); 167 set_pte_at(mm, va, ptep, pte); 168 pte_unmap_unlock(ptep, ptl); 169 } 170 171 if (mm->context.ldt) { 172 /* 173 * We already had an LDT. The top-level entry should already 174 * have been allocated and synchronized with the usermode 175 * tables. 176 */ 177 WARN_ON(!had_top_level_entry); 178 if (static_cpu_has(X86_FEATURE_PTI)) 179 WARN_ON(!kernel_to_user_pgdp(pgd)->pgd); 180 } else { 181 /* 182 * This is the first time we're mapping an LDT for this process. 183 * Sync the pgd to the usermode tables. 184 */ 185 WARN_ON(had_top_level_entry); 186 if (static_cpu_has(X86_FEATURE_PTI)) { 187 WARN_ON(kernel_to_user_pgdp(pgd)->pgd); 188 set_pgd(kernel_to_user_pgdp(pgd), *pgd); 189 } 190 } 191 192 va = (unsigned long)ldt_slot_va(slot); 193 flush_tlb_mm_range(mm, va, va + LDT_SLOT_STRIDE, 0); 194 195 ldt->slot = slot; 196 #endif 197 return 0; 198 } 199 200 static void free_ldt_pgtables(struct mm_struct *mm) 201 { 202 #ifdef CONFIG_PAGE_TABLE_ISOLATION 203 struct mmu_gather tlb; 204 unsigned long start = LDT_BASE_ADDR; 205 unsigned long end = start + (1UL << PGDIR_SHIFT); 206 207 if (!static_cpu_has(X86_FEATURE_PTI)) 208 return; 209 210 tlb_gather_mmu(&tlb, mm, start, end); 211 free_pgd_range(&tlb, start, end, start, end); 212 tlb_finish_mmu(&tlb, start, end); 213 #endif 214 } 215 216 /* After calling this, the LDT is immutable. */ 217 static void finalize_ldt_struct(struct ldt_struct *ldt) 218 { 219 paravirt_alloc_ldt(ldt->entries, ldt->nr_entries); 220 } 221 222 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt) 223 { 224 mutex_lock(&mm->context.lock); 225 226 /* Synchronizes with READ_ONCE in load_mm_ldt. */ 227 smp_store_release(&mm->context.ldt, ldt); 228 229 /* Activate the LDT for all CPUs using currents mm. */ 230 on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true); 231 232 mutex_unlock(&mm->context.lock); 233 } 234 235 static void free_ldt_struct(struct ldt_struct *ldt) 236 { 237 if (likely(!ldt)) 238 return; 239 240 paravirt_free_ldt(ldt->entries, ldt->nr_entries); 241 if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE) 242 vfree_atomic(ldt->entries); 243 else 244 free_page((unsigned long)ldt->entries); 245 kfree(ldt); 246 } 247 248 /* 249 * Called on fork from arch_dup_mmap(). Just copy the current LDT state, 250 * the new task is not running, so nothing can be installed. 251 */ 252 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm) 253 { 254 struct ldt_struct *new_ldt; 255 int retval = 0; 256 257 if (!old_mm) 258 return 0; 259 260 mutex_lock(&old_mm->context.lock); 261 if (!old_mm->context.ldt) 262 goto out_unlock; 263 264 new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries); 265 if (!new_ldt) { 266 retval = -ENOMEM; 267 goto out_unlock; 268 } 269 270 memcpy(new_ldt->entries, old_mm->context.ldt->entries, 271 new_ldt->nr_entries * LDT_ENTRY_SIZE); 272 finalize_ldt_struct(new_ldt); 273 274 retval = map_ldt_struct(mm, new_ldt, 0); 275 if (retval) { 276 free_ldt_pgtables(mm); 277 free_ldt_struct(new_ldt); 278 goto out_unlock; 279 } 280 mm->context.ldt = new_ldt; 281 282 out_unlock: 283 mutex_unlock(&old_mm->context.lock); 284 return retval; 285 } 286 287 /* 288 * No need to lock the MM as we are the last user 289 * 290 * 64bit: Don't touch the LDT register - we're already in the next thread. 291 */ 292 void destroy_context_ldt(struct mm_struct *mm) 293 { 294 free_ldt_struct(mm->context.ldt); 295 mm->context.ldt = NULL; 296 } 297 298 void ldt_arch_exit_mmap(struct mm_struct *mm) 299 { 300 free_ldt_pgtables(mm); 301 } 302 303 static int read_ldt(void __user *ptr, unsigned long bytecount) 304 { 305 struct mm_struct *mm = current->mm; 306 unsigned long entries_size; 307 int retval; 308 309 down_read(&mm->context.ldt_usr_sem); 310 311 if (!mm->context.ldt) { 312 retval = 0; 313 goto out_unlock; 314 } 315 316 if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES) 317 bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES; 318 319 entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE; 320 if (entries_size > bytecount) 321 entries_size = bytecount; 322 323 if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) { 324 retval = -EFAULT; 325 goto out_unlock; 326 } 327 328 if (entries_size != bytecount) { 329 /* Zero-fill the rest and pretend we read bytecount bytes. */ 330 if (clear_user(ptr + entries_size, bytecount - entries_size)) { 331 retval = -EFAULT; 332 goto out_unlock; 333 } 334 } 335 retval = bytecount; 336 337 out_unlock: 338 up_read(&mm->context.ldt_usr_sem); 339 return retval; 340 } 341 342 static int read_default_ldt(void __user *ptr, unsigned long bytecount) 343 { 344 /* CHECKME: Can we use _one_ random number ? */ 345 #ifdef CONFIG_X86_32 346 unsigned long size = 5 * sizeof(struct desc_struct); 347 #else 348 unsigned long size = 128; 349 #endif 350 if (bytecount > size) 351 bytecount = size; 352 if (clear_user(ptr, bytecount)) 353 return -EFAULT; 354 return bytecount; 355 } 356 357 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode) 358 { 359 struct mm_struct *mm = current->mm; 360 struct ldt_struct *new_ldt, *old_ldt; 361 unsigned int old_nr_entries, new_nr_entries; 362 struct user_desc ldt_info; 363 struct desc_struct ldt; 364 int error; 365 366 error = -EINVAL; 367 if (bytecount != sizeof(ldt_info)) 368 goto out; 369 error = -EFAULT; 370 if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info))) 371 goto out; 372 373 error = -EINVAL; 374 if (ldt_info.entry_number >= LDT_ENTRIES) 375 goto out; 376 if (ldt_info.contents == 3) { 377 if (oldmode) 378 goto out; 379 if (ldt_info.seg_not_present == 0) 380 goto out; 381 } 382 383 if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) || 384 LDT_empty(&ldt_info)) { 385 /* The user wants to clear the entry. */ 386 memset(&ldt, 0, sizeof(ldt)); 387 } else { 388 if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) { 389 error = -EINVAL; 390 goto out; 391 } 392 393 fill_ldt(&ldt, &ldt_info); 394 if (oldmode) 395 ldt.avl = 0; 396 } 397 398 if (down_write_killable(&mm->context.ldt_usr_sem)) 399 return -EINTR; 400 401 old_ldt = mm->context.ldt; 402 old_nr_entries = old_ldt ? old_ldt->nr_entries : 0; 403 new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries); 404 405 error = -ENOMEM; 406 new_ldt = alloc_ldt_struct(new_nr_entries); 407 if (!new_ldt) 408 goto out_unlock; 409 410 if (old_ldt) 411 memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE); 412 413 new_ldt->entries[ldt_info.entry_number] = ldt; 414 finalize_ldt_struct(new_ldt); 415 416 /* 417 * If we are using PTI, map the new LDT into the userspace pagetables. 418 * If there is already an LDT, use the other slot so that other CPUs 419 * will continue to use the old LDT until install_ldt() switches 420 * them over to the new LDT. 421 */ 422 error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0); 423 if (error) { 424 /* 425 * This only can fail for the first LDT setup. If an LDT is 426 * already installed then the PTE page is already 427 * populated. Mop up a half populated page table. 428 */ 429 if (!WARN_ON_ONCE(old_ldt)) 430 free_ldt_pgtables(mm); 431 free_ldt_struct(new_ldt); 432 goto out_unlock; 433 } 434 435 install_ldt(mm, new_ldt); 436 free_ldt_struct(old_ldt); 437 error = 0; 438 439 out_unlock: 440 up_write(&mm->context.ldt_usr_sem); 441 out: 442 return error; 443 } 444 445 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr , 446 unsigned long , bytecount) 447 { 448 int ret = -ENOSYS; 449 450 switch (func) { 451 case 0: 452 ret = read_ldt(ptr, bytecount); 453 break; 454 case 1: 455 ret = write_ldt(ptr, bytecount, 1); 456 break; 457 case 2: 458 ret = read_default_ldt(ptr, bytecount); 459 break; 460 case 0x11: 461 ret = write_ldt(ptr, bytecount, 0); 462 break; 463 } 464 /* 465 * The SYSCALL_DEFINE() macros give us an 'unsigned long' 466 * return type, but tht ABI for sys_modify_ldt() expects 467 * 'int'. This cast gives us an int-sized value in %rax 468 * for the return code. The 'unsigned' is necessary so 469 * the compiler does not try to sign-extend the negative 470 * return codes into the high half of the register when 471 * taking the value from int->long. 472 */ 473 return (unsigned int)ret; 474 } 475