xref: /openbmc/linux/arch/x86/kernel/ldt.c (revision 04b3c795)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
4  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
5  * Copyright (C) 2002 Andi Kleen
6  *
7  * This handles calls from both 32bit and 64bit mode.
8  *
9  * Lock order:
10  *	contex.ldt_usr_sem
11  *	  mmap_lock
12  *	    context.lock
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/sched.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/syscalls.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/uaccess.h>
25 
26 #include <asm/ldt.h>
27 #include <asm/tlb.h>
28 #include <asm/desc.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable_areas.h>
31 
32 /* This is a multiple of PAGE_SIZE. */
33 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
34 
35 static inline void *ldt_slot_va(int slot)
36 {
37 	return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
38 }
39 
40 void load_mm_ldt(struct mm_struct *mm)
41 {
42 	struct ldt_struct *ldt;
43 
44 	/* READ_ONCE synchronizes with smp_store_release */
45 	ldt = READ_ONCE(mm->context.ldt);
46 
47 	/*
48 	 * Any change to mm->context.ldt is followed by an IPI to all
49 	 * CPUs with the mm active.  The LDT will not be freed until
50 	 * after the IPI is handled by all such CPUs.  This means that,
51 	 * if the ldt_struct changes before we return, the values we see
52 	 * will be safe, and the new values will be loaded before we run
53 	 * any user code.
54 	 *
55 	 * NB: don't try to convert this to use RCU without extreme care.
56 	 * We would still need IRQs off, because we don't want to change
57 	 * the local LDT after an IPI loaded a newer value than the one
58 	 * that we can see.
59 	 */
60 
61 	if (unlikely(ldt)) {
62 		if (static_cpu_has(X86_FEATURE_PTI)) {
63 			if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
64 				/*
65 				 * Whoops -- either the new LDT isn't mapped
66 				 * (if slot == -1) or is mapped into a bogus
67 				 * slot (if slot > 1).
68 				 */
69 				clear_LDT();
70 				return;
71 			}
72 
73 			/*
74 			 * If page table isolation is enabled, ldt->entries
75 			 * will not be mapped in the userspace pagetables.
76 			 * Tell the CPU to access the LDT through the alias
77 			 * at ldt_slot_va(ldt->slot).
78 			 */
79 			set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
80 		} else {
81 			set_ldt(ldt->entries, ldt->nr_entries);
82 		}
83 	} else {
84 		clear_LDT();
85 	}
86 }
87 
88 void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
89 {
90 	/*
91 	 * Load the LDT if either the old or new mm had an LDT.
92 	 *
93 	 * An mm will never go from having an LDT to not having an LDT.  Two
94 	 * mms never share an LDT, so we don't gain anything by checking to
95 	 * see whether the LDT changed.  There's also no guarantee that
96 	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
97 	 * then prev->context.ldt will also be non-NULL.
98 	 *
99 	 * If we really cared, we could optimize the case where prev == next
100 	 * and we're exiting lazy mode.  Most of the time, if this happens,
101 	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
102 	 * used by legacy code and emulators where we don't need this level of
103 	 * performance.
104 	 *
105 	 * This uses | instead of || because it generates better code.
106 	 */
107 	if (unlikely((unsigned long)prev->context.ldt |
108 		     (unsigned long)next->context.ldt))
109 		load_mm_ldt(next);
110 
111 	DEBUG_LOCKS_WARN_ON(preemptible());
112 }
113 
114 static void refresh_ldt_segments(void)
115 {
116 #ifdef CONFIG_X86_64
117 	unsigned short sel;
118 
119 	/*
120 	 * Make sure that the cached DS and ES descriptors match the updated
121 	 * LDT.
122 	 */
123 	savesegment(ds, sel);
124 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
125 		loadsegment(ds, sel);
126 
127 	savesegment(es, sel);
128 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
129 		loadsegment(es, sel);
130 #endif
131 }
132 
133 /* context.lock is held by the task which issued the smp function call */
134 static void flush_ldt(void *__mm)
135 {
136 	struct mm_struct *mm = __mm;
137 
138 	if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
139 		return;
140 
141 	load_mm_ldt(mm);
142 
143 	refresh_ldt_segments();
144 }
145 
146 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
147 static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
148 {
149 	struct ldt_struct *new_ldt;
150 	unsigned int alloc_size;
151 
152 	if (num_entries > LDT_ENTRIES)
153 		return NULL;
154 
155 	new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL);
156 	if (!new_ldt)
157 		return NULL;
158 
159 	BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
160 	alloc_size = num_entries * LDT_ENTRY_SIZE;
161 
162 	/*
163 	 * Xen is very picky: it requires a page-aligned LDT that has no
164 	 * trailing nonzero bytes in any page that contains LDT descriptors.
165 	 * Keep it simple: zero the whole allocation and never allocate less
166 	 * than PAGE_SIZE.
167 	 */
168 	if (alloc_size > PAGE_SIZE)
169 		new_ldt->entries = vzalloc(alloc_size);
170 	else
171 		new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL);
172 
173 	if (!new_ldt->entries) {
174 		kfree(new_ldt);
175 		return NULL;
176 	}
177 
178 	/* The new LDT isn't aliased for PTI yet. */
179 	new_ldt->slot = -1;
180 
181 	new_ldt->nr_entries = num_entries;
182 	return new_ldt;
183 }
184 
185 #ifdef CONFIG_PAGE_TABLE_ISOLATION
186 
187 static void do_sanity_check(struct mm_struct *mm,
188 			    bool had_kernel_mapping,
189 			    bool had_user_mapping)
190 {
191 	if (mm->context.ldt) {
192 		/*
193 		 * We already had an LDT.  The top-level entry should already
194 		 * have been allocated and synchronized with the usermode
195 		 * tables.
196 		 */
197 		WARN_ON(!had_kernel_mapping);
198 		if (boot_cpu_has(X86_FEATURE_PTI))
199 			WARN_ON(!had_user_mapping);
200 	} else {
201 		/*
202 		 * This is the first time we're mapping an LDT for this process.
203 		 * Sync the pgd to the usermode tables.
204 		 */
205 		WARN_ON(had_kernel_mapping);
206 		if (boot_cpu_has(X86_FEATURE_PTI))
207 			WARN_ON(had_user_mapping);
208 	}
209 }
210 
211 #ifdef CONFIG_X86_PAE
212 
213 static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va)
214 {
215 	p4d_t *p4d;
216 	pud_t *pud;
217 
218 	if (pgd->pgd == 0)
219 		return NULL;
220 
221 	p4d = p4d_offset(pgd, va);
222 	if (p4d_none(*p4d))
223 		return NULL;
224 
225 	pud = pud_offset(p4d, va);
226 	if (pud_none(*pud))
227 		return NULL;
228 
229 	return pmd_offset(pud, va);
230 }
231 
232 static void map_ldt_struct_to_user(struct mm_struct *mm)
233 {
234 	pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
235 	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
236 	pmd_t *k_pmd, *u_pmd;
237 
238 	k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
239 	u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
240 
241 	if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
242 		set_pmd(u_pmd, *k_pmd);
243 }
244 
245 static void sanity_check_ldt_mapping(struct mm_struct *mm)
246 {
247 	pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
248 	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
249 	bool had_kernel, had_user;
250 	pmd_t *k_pmd, *u_pmd;
251 
252 	k_pmd      = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
253 	u_pmd      = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
254 	had_kernel = (k_pmd->pmd != 0);
255 	had_user   = (u_pmd->pmd != 0);
256 
257 	do_sanity_check(mm, had_kernel, had_user);
258 }
259 
260 #else /* !CONFIG_X86_PAE */
261 
262 static void map_ldt_struct_to_user(struct mm_struct *mm)
263 {
264 	pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
265 
266 	if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
267 		set_pgd(kernel_to_user_pgdp(pgd), *pgd);
268 }
269 
270 static void sanity_check_ldt_mapping(struct mm_struct *mm)
271 {
272 	pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
273 	bool had_kernel = (pgd->pgd != 0);
274 	bool had_user   = (kernel_to_user_pgdp(pgd)->pgd != 0);
275 
276 	do_sanity_check(mm, had_kernel, had_user);
277 }
278 
279 #endif /* CONFIG_X86_PAE */
280 
281 /*
282  * If PTI is enabled, this maps the LDT into the kernelmode and
283  * usermode tables for the given mm.
284  */
285 static int
286 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
287 {
288 	unsigned long va;
289 	bool is_vmalloc;
290 	spinlock_t *ptl;
291 	int i, nr_pages;
292 
293 	if (!boot_cpu_has(X86_FEATURE_PTI))
294 		return 0;
295 
296 	/*
297 	 * Any given ldt_struct should have map_ldt_struct() called at most
298 	 * once.
299 	 */
300 	WARN_ON(ldt->slot != -1);
301 
302 	/* Check if the current mappings are sane */
303 	sanity_check_ldt_mapping(mm);
304 
305 	is_vmalloc = is_vmalloc_addr(ldt->entries);
306 
307 	nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
308 
309 	for (i = 0; i < nr_pages; i++) {
310 		unsigned long offset = i << PAGE_SHIFT;
311 		const void *src = (char *)ldt->entries + offset;
312 		unsigned long pfn;
313 		pgprot_t pte_prot;
314 		pte_t pte, *ptep;
315 
316 		va = (unsigned long)ldt_slot_va(slot) + offset;
317 		pfn = is_vmalloc ? vmalloc_to_pfn(src) :
318 			page_to_pfn(virt_to_page(src));
319 		/*
320 		 * Treat the PTI LDT range as a *userspace* range.
321 		 * get_locked_pte() will allocate all needed pagetables
322 		 * and account for them in this mm.
323 		 */
324 		ptep = get_locked_pte(mm, va, &ptl);
325 		if (!ptep)
326 			return -ENOMEM;
327 		/*
328 		 * Map it RO so the easy to find address is not a primary
329 		 * target via some kernel interface which misses a
330 		 * permission check.
331 		 */
332 		pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
333 		/* Filter out unsuppored __PAGE_KERNEL* bits: */
334 		pgprot_val(pte_prot) &= __supported_pte_mask;
335 		pte = pfn_pte(pfn, pte_prot);
336 		set_pte_at(mm, va, ptep, pte);
337 		pte_unmap_unlock(ptep, ptl);
338 	}
339 
340 	/* Propagate LDT mapping to the user page-table */
341 	map_ldt_struct_to_user(mm);
342 
343 	ldt->slot = slot;
344 	return 0;
345 }
346 
347 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
348 {
349 	unsigned long va;
350 	int i, nr_pages;
351 
352 	if (!ldt)
353 		return;
354 
355 	/* LDT map/unmap is only required for PTI */
356 	if (!boot_cpu_has(X86_FEATURE_PTI))
357 		return;
358 
359 	nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
360 
361 	for (i = 0; i < nr_pages; i++) {
362 		unsigned long offset = i << PAGE_SHIFT;
363 		spinlock_t *ptl;
364 		pte_t *ptep;
365 
366 		va = (unsigned long)ldt_slot_va(ldt->slot) + offset;
367 		ptep = get_locked_pte(mm, va, &ptl);
368 		pte_clear(mm, va, ptep);
369 		pte_unmap_unlock(ptep, ptl);
370 	}
371 
372 	va = (unsigned long)ldt_slot_va(ldt->slot);
373 	flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false);
374 }
375 
376 #else /* !CONFIG_PAGE_TABLE_ISOLATION */
377 
378 static int
379 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
380 {
381 	return 0;
382 }
383 
384 static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
385 {
386 }
387 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
388 
389 static void free_ldt_pgtables(struct mm_struct *mm)
390 {
391 #ifdef CONFIG_PAGE_TABLE_ISOLATION
392 	struct mmu_gather tlb;
393 	unsigned long start = LDT_BASE_ADDR;
394 	unsigned long end = LDT_END_ADDR;
395 
396 	if (!boot_cpu_has(X86_FEATURE_PTI))
397 		return;
398 
399 	tlb_gather_mmu(&tlb, mm, start, end);
400 	free_pgd_range(&tlb, start, end, start, end);
401 	tlb_finish_mmu(&tlb, start, end);
402 #endif
403 }
404 
405 /* After calling this, the LDT is immutable. */
406 static void finalize_ldt_struct(struct ldt_struct *ldt)
407 {
408 	paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
409 }
410 
411 static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
412 {
413 	mutex_lock(&mm->context.lock);
414 
415 	/* Synchronizes with READ_ONCE in load_mm_ldt. */
416 	smp_store_release(&mm->context.ldt, ldt);
417 
418 	/* Activate the LDT for all CPUs using currents mm. */
419 	on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);
420 
421 	mutex_unlock(&mm->context.lock);
422 }
423 
424 static void free_ldt_struct(struct ldt_struct *ldt)
425 {
426 	if (likely(!ldt))
427 		return;
428 
429 	paravirt_free_ldt(ldt->entries, ldt->nr_entries);
430 	if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
431 		vfree_atomic(ldt->entries);
432 	else
433 		free_page((unsigned long)ldt->entries);
434 	kfree(ldt);
435 }
436 
437 /*
438  * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
439  * the new task is not running, so nothing can be installed.
440  */
441 int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
442 {
443 	struct ldt_struct *new_ldt;
444 	int retval = 0;
445 
446 	if (!old_mm)
447 		return 0;
448 
449 	mutex_lock(&old_mm->context.lock);
450 	if (!old_mm->context.ldt)
451 		goto out_unlock;
452 
453 	new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
454 	if (!new_ldt) {
455 		retval = -ENOMEM;
456 		goto out_unlock;
457 	}
458 
459 	memcpy(new_ldt->entries, old_mm->context.ldt->entries,
460 	       new_ldt->nr_entries * LDT_ENTRY_SIZE);
461 	finalize_ldt_struct(new_ldt);
462 
463 	retval = map_ldt_struct(mm, new_ldt, 0);
464 	if (retval) {
465 		free_ldt_pgtables(mm);
466 		free_ldt_struct(new_ldt);
467 		goto out_unlock;
468 	}
469 	mm->context.ldt = new_ldt;
470 
471 out_unlock:
472 	mutex_unlock(&old_mm->context.lock);
473 	return retval;
474 }
475 
476 /*
477  * No need to lock the MM as we are the last user
478  *
479  * 64bit: Don't touch the LDT register - we're already in the next thread.
480  */
481 void destroy_context_ldt(struct mm_struct *mm)
482 {
483 	free_ldt_struct(mm->context.ldt);
484 	mm->context.ldt = NULL;
485 }
486 
487 void ldt_arch_exit_mmap(struct mm_struct *mm)
488 {
489 	free_ldt_pgtables(mm);
490 }
491 
492 static int read_ldt(void __user *ptr, unsigned long bytecount)
493 {
494 	struct mm_struct *mm = current->mm;
495 	unsigned long entries_size;
496 	int retval;
497 
498 	down_read(&mm->context.ldt_usr_sem);
499 
500 	if (!mm->context.ldt) {
501 		retval = 0;
502 		goto out_unlock;
503 	}
504 
505 	if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
506 		bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;
507 
508 	entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
509 	if (entries_size > bytecount)
510 		entries_size = bytecount;
511 
512 	if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
513 		retval = -EFAULT;
514 		goto out_unlock;
515 	}
516 
517 	if (entries_size != bytecount) {
518 		/* Zero-fill the rest and pretend we read bytecount bytes. */
519 		if (clear_user(ptr + entries_size, bytecount - entries_size)) {
520 			retval = -EFAULT;
521 			goto out_unlock;
522 		}
523 	}
524 	retval = bytecount;
525 
526 out_unlock:
527 	up_read(&mm->context.ldt_usr_sem);
528 	return retval;
529 }
530 
531 static int read_default_ldt(void __user *ptr, unsigned long bytecount)
532 {
533 	/* CHECKME: Can we use _one_ random number ? */
534 #ifdef CONFIG_X86_32
535 	unsigned long size = 5 * sizeof(struct desc_struct);
536 #else
537 	unsigned long size = 128;
538 #endif
539 	if (bytecount > size)
540 		bytecount = size;
541 	if (clear_user(ptr, bytecount))
542 		return -EFAULT;
543 	return bytecount;
544 }
545 
546 static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
547 {
548 	struct mm_struct *mm = current->mm;
549 	struct ldt_struct *new_ldt, *old_ldt;
550 	unsigned int old_nr_entries, new_nr_entries;
551 	struct user_desc ldt_info;
552 	struct desc_struct ldt;
553 	int error;
554 
555 	error = -EINVAL;
556 	if (bytecount != sizeof(ldt_info))
557 		goto out;
558 	error = -EFAULT;
559 	if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
560 		goto out;
561 
562 	error = -EINVAL;
563 	if (ldt_info.entry_number >= LDT_ENTRIES)
564 		goto out;
565 	if (ldt_info.contents == 3) {
566 		if (oldmode)
567 			goto out;
568 		if (ldt_info.seg_not_present == 0)
569 			goto out;
570 	}
571 
572 	if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
573 	    LDT_empty(&ldt_info)) {
574 		/* The user wants to clear the entry. */
575 		memset(&ldt, 0, sizeof(ldt));
576 	} else {
577 		if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) {
578 			error = -EINVAL;
579 			goto out;
580 		}
581 
582 		fill_ldt(&ldt, &ldt_info);
583 		if (oldmode)
584 			ldt.avl = 0;
585 	}
586 
587 	if (down_write_killable(&mm->context.ldt_usr_sem))
588 		return -EINTR;
589 
590 	old_ldt       = mm->context.ldt;
591 	old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
592 	new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);
593 
594 	error = -ENOMEM;
595 	new_ldt = alloc_ldt_struct(new_nr_entries);
596 	if (!new_ldt)
597 		goto out_unlock;
598 
599 	if (old_ldt)
600 		memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);
601 
602 	new_ldt->entries[ldt_info.entry_number] = ldt;
603 	finalize_ldt_struct(new_ldt);
604 
605 	/*
606 	 * If we are using PTI, map the new LDT into the userspace pagetables.
607 	 * If there is already an LDT, use the other slot so that other CPUs
608 	 * will continue to use the old LDT until install_ldt() switches
609 	 * them over to the new LDT.
610 	 */
611 	error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
612 	if (error) {
613 		/*
614 		 * This only can fail for the first LDT setup. If an LDT is
615 		 * already installed then the PTE page is already
616 		 * populated. Mop up a half populated page table.
617 		 */
618 		if (!WARN_ON_ONCE(old_ldt))
619 			free_ldt_pgtables(mm);
620 		free_ldt_struct(new_ldt);
621 		goto out_unlock;
622 	}
623 
624 	install_ldt(mm, new_ldt);
625 	unmap_ldt_struct(mm, old_ldt);
626 	free_ldt_struct(old_ldt);
627 	error = 0;
628 
629 out_unlock:
630 	up_write(&mm->context.ldt_usr_sem);
631 out:
632 	return error;
633 }
634 
635 SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
636 		unsigned long , bytecount)
637 {
638 	int ret = -ENOSYS;
639 
640 	switch (func) {
641 	case 0:
642 		ret = read_ldt(ptr, bytecount);
643 		break;
644 	case 1:
645 		ret = write_ldt(ptr, bytecount, 1);
646 		break;
647 	case 2:
648 		ret = read_default_ldt(ptr, bytecount);
649 		break;
650 	case 0x11:
651 		ret = write_ldt(ptr, bytecount, 0);
652 		break;
653 	}
654 	/*
655 	 * The SYSCALL_DEFINE() macros give us an 'unsigned long'
656 	 * return type, but tht ABI for sys_modify_ldt() expects
657 	 * 'int'.  This cast gives us an int-sized value in %rax
658 	 * for the return code.  The 'unsigned' is necessary so
659 	 * the compiler does not try to sign-extend the negative
660 	 * return codes into the high half of the register when
661 	 * taking the value from int->long.
662 	 */
663 	return (unsigned int)ret;
664 }
665