xref: /openbmc/linux/arch/x86/kernel/kvmclock.c (revision f066af882b3755c5cdd2574e860433750c6bce1e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  KVM paravirtual clock driver. A clocksource implementation
3     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
4 */
5 
6 #include <linux/clocksource.h>
7 #include <linux/kvm_para.h>
8 #include <asm/pvclock.h>
9 #include <asm/msr.h>
10 #include <asm/apic.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/cpuhotplug.h>
14 #include <linux/sched.h>
15 #include <linux/sched/clock.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/set_memory.h>
19 
20 #include <asm/hypervisor.h>
21 #include <asm/mem_encrypt.h>
22 #include <asm/x86_init.h>
23 #include <asm/reboot.h>
24 #include <asm/kvmclock.h>
25 
26 static int kvmclock __initdata = 1;
27 static int kvmclock_vsyscall __initdata = 1;
28 static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
29 static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
30 static u64 kvm_sched_clock_offset __ro_after_init;
31 
32 static int __init parse_no_kvmclock(char *arg)
33 {
34 	kvmclock = 0;
35 	return 0;
36 }
37 early_param("no-kvmclock", parse_no_kvmclock);
38 
39 static int __init parse_no_kvmclock_vsyscall(char *arg)
40 {
41 	kvmclock_vsyscall = 0;
42 	return 0;
43 }
44 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
45 
46 /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
47 #define HVC_BOOT_ARRAY_SIZE \
48 	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
49 
50 static struct pvclock_vsyscall_time_info
51 			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
52 static struct pvclock_wall_clock wall_clock __bss_decrypted;
53 static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
54 static struct pvclock_vsyscall_time_info *hvclock_mem;
55 
56 static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void)
57 {
58 	return &this_cpu_read(hv_clock_per_cpu)->pvti;
59 }
60 
61 static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void)
62 {
63 	return this_cpu_read(hv_clock_per_cpu);
64 }
65 
66 /*
67  * The wallclock is the time of day when we booted. Since then, some time may
68  * have elapsed since the hypervisor wrote the data. So we try to account for
69  * that with system time
70  */
71 static void kvm_get_wallclock(struct timespec64 *now)
72 {
73 	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
74 	preempt_disable();
75 	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
76 	preempt_enable();
77 }
78 
79 static int kvm_set_wallclock(const struct timespec64 *now)
80 {
81 	return -ENODEV;
82 }
83 
84 static u64 kvm_clock_read(void)
85 {
86 	u64 ret;
87 
88 	preempt_disable_notrace();
89 	ret = pvclock_clocksource_read(this_cpu_pvti());
90 	preempt_enable_notrace();
91 	return ret;
92 }
93 
94 static u64 kvm_clock_get_cycles(struct clocksource *cs)
95 {
96 	return kvm_clock_read();
97 }
98 
99 static u64 kvm_sched_clock_read(void)
100 {
101 	return kvm_clock_read() - kvm_sched_clock_offset;
102 }
103 
104 static inline void kvm_sched_clock_init(bool stable)
105 {
106 	if (!stable)
107 		clear_sched_clock_stable();
108 	kvm_sched_clock_offset = kvm_clock_read();
109 	pv_ops.time.sched_clock = kvm_sched_clock_read;
110 
111 	pr_info("kvm-clock: using sched offset of %llu cycles",
112 		kvm_sched_clock_offset);
113 
114 	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
115 		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
116 }
117 
118 /*
119  * If we don't do that, there is the possibility that the guest
120  * will calibrate under heavy load - thus, getting a lower lpj -
121  * and execute the delays themselves without load. This is wrong,
122  * because no delay loop can finish beforehand.
123  * Any heuristics is subject to fail, because ultimately, a large
124  * poll of guests can be running and trouble each other. So we preset
125  * lpj here
126  */
127 static unsigned long kvm_get_tsc_khz(void)
128 {
129 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
130 	return pvclock_tsc_khz(this_cpu_pvti());
131 }
132 
133 static void __init kvm_get_preset_lpj(void)
134 {
135 	unsigned long khz;
136 	u64 lpj;
137 
138 	khz = kvm_get_tsc_khz();
139 
140 	lpj = ((u64)khz * 1000);
141 	do_div(lpj, HZ);
142 	preset_lpj = lpj;
143 }
144 
145 bool kvm_check_and_clear_guest_paused(void)
146 {
147 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
148 	bool ret = false;
149 
150 	if (!src)
151 		return ret;
152 
153 	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
154 		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
155 		pvclock_touch_watchdogs();
156 		ret = true;
157 	}
158 	return ret;
159 }
160 
161 static int kvm_cs_enable(struct clocksource *cs)
162 {
163 	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
164 	return 0;
165 }
166 
167 struct clocksource kvm_clock = {
168 	.name	= "kvm-clock",
169 	.read	= kvm_clock_get_cycles,
170 	.rating	= 400,
171 	.mask	= CLOCKSOURCE_MASK(64),
172 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
173 	.enable	= kvm_cs_enable,
174 };
175 EXPORT_SYMBOL_GPL(kvm_clock);
176 
177 static void kvm_register_clock(char *txt)
178 {
179 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
180 	u64 pa;
181 
182 	if (!src)
183 		return;
184 
185 	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
186 	wrmsrl(msr_kvm_system_time, pa);
187 	pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
188 }
189 
190 static void kvm_save_sched_clock_state(void)
191 {
192 }
193 
194 static void kvm_restore_sched_clock_state(void)
195 {
196 	kvm_register_clock("primary cpu clock, resume");
197 }
198 
199 #ifdef CONFIG_X86_LOCAL_APIC
200 static void kvm_setup_secondary_clock(void)
201 {
202 	kvm_register_clock("secondary cpu clock");
203 }
204 #endif
205 
206 /*
207  * After the clock is registered, the host will keep writing to the
208  * registered memory location. If the guest happens to shutdown, this memory
209  * won't be valid. In cases like kexec, in which you install a new kernel, this
210  * means a random memory location will be kept being written. So before any
211  * kind of shutdown from our side, we unregister the clock by writing anything
212  * that does not have the 'enable' bit set in the msr
213  */
214 #ifdef CONFIG_KEXEC_CORE
215 static void kvm_crash_shutdown(struct pt_regs *regs)
216 {
217 	native_write_msr(msr_kvm_system_time, 0, 0);
218 	kvm_disable_steal_time();
219 	native_machine_crash_shutdown(regs);
220 }
221 #endif
222 
223 static void kvm_shutdown(void)
224 {
225 	native_write_msr(msr_kvm_system_time, 0, 0);
226 	kvm_disable_steal_time();
227 	native_machine_shutdown();
228 }
229 
230 static void __init kvmclock_init_mem(void)
231 {
232 	unsigned long ncpus;
233 	unsigned int order;
234 	struct page *p;
235 	int r;
236 
237 	if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
238 		return;
239 
240 	ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
241 	order = get_order(ncpus * sizeof(*hvclock_mem));
242 
243 	p = alloc_pages(GFP_KERNEL, order);
244 	if (!p) {
245 		pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
246 		return;
247 	}
248 
249 	hvclock_mem = page_address(p);
250 
251 	/*
252 	 * hvclock is shared between the guest and the hypervisor, must
253 	 * be mapped decrypted.
254 	 */
255 	if (sev_active()) {
256 		r = set_memory_decrypted((unsigned long) hvclock_mem,
257 					 1UL << order);
258 		if (r) {
259 			__free_pages(p, order);
260 			hvclock_mem = NULL;
261 			pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
262 			return;
263 		}
264 	}
265 
266 	memset(hvclock_mem, 0, PAGE_SIZE << order);
267 }
268 
269 static int __init kvm_setup_vsyscall_timeinfo(void)
270 {
271 	kvmclock_init_mem();
272 
273 #ifdef CONFIG_X86_64
274 	if (per_cpu(hv_clock_per_cpu, 0) && kvmclock_vsyscall) {
275 		u8 flags;
276 
277 		flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
278 		if (!(flags & PVCLOCK_TSC_STABLE_BIT))
279 			return 0;
280 
281 		kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
282 	}
283 #endif
284 
285 	return 0;
286 }
287 early_initcall(kvm_setup_vsyscall_timeinfo);
288 
289 static int kvmclock_setup_percpu(unsigned int cpu)
290 {
291 	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
292 
293 	/*
294 	 * The per cpu area setup replicates CPU0 data to all cpu
295 	 * pointers. So carefully check. CPU0 has been set up in init
296 	 * already.
297 	 */
298 	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
299 		return 0;
300 
301 	/* Use the static page for the first CPUs, allocate otherwise */
302 	if (cpu < HVC_BOOT_ARRAY_SIZE)
303 		p = &hv_clock_boot[cpu];
304 	else if (hvclock_mem)
305 		p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
306 	else
307 		return -ENOMEM;
308 
309 	per_cpu(hv_clock_per_cpu, cpu) = p;
310 	return p ? 0 : -ENOMEM;
311 }
312 
313 void __init kvmclock_init(void)
314 {
315 	u8 flags;
316 
317 	if (!kvm_para_available() || !kvmclock)
318 		return;
319 
320 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
321 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
322 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
323 	} else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
324 		return;
325 	}
326 
327 	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
328 			      kvmclock_setup_percpu, NULL) < 0) {
329 		return;
330 	}
331 
332 	pr_info("kvm-clock: Using msrs %x and %x",
333 		msr_kvm_system_time, msr_kvm_wall_clock);
334 
335 	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
336 	kvm_register_clock("primary cpu clock");
337 	pvclock_set_pvti_cpu0_va(hv_clock_boot);
338 
339 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
340 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
341 
342 	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
343 	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
344 
345 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
346 	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
347 	x86_platform.get_wallclock = kvm_get_wallclock;
348 	x86_platform.set_wallclock = kvm_set_wallclock;
349 #ifdef CONFIG_X86_LOCAL_APIC
350 	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
351 #endif
352 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
353 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
354 	machine_ops.shutdown  = kvm_shutdown;
355 #ifdef CONFIG_KEXEC_CORE
356 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
357 #endif
358 	kvm_get_preset_lpj();
359 
360 	/*
361 	 * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
362 	 * with P/T states and does not stop in deep C-states.
363 	 *
364 	 * Invariant TSC exposed by host means kvmclock is not necessary:
365 	 * can use TSC as clocksource.
366 	 *
367 	 */
368 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
369 	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
370 	    !check_tsc_unstable())
371 		kvm_clock.rating = 299;
372 
373 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
374 	pv_info.name = "KVM";
375 }
376