xref: /openbmc/linux/arch/x86/kernel/kvmclock.c (revision e285d5bf)
1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18 
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/cpuhotplug.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/mm.h>
30 #include <linux/slab.h>
31 
32 #include <asm/hypervisor.h>
33 #include <asm/mem_encrypt.h>
34 #include <asm/x86_init.h>
35 #include <asm/reboot.h>
36 #include <asm/kvmclock.h>
37 
38 static int kvmclock __initdata = 1;
39 static int kvmclock_vsyscall __initdata = 1;
40 static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
41 static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
42 static u64 kvm_sched_clock_offset __ro_after_init;
43 
44 static int __init parse_no_kvmclock(char *arg)
45 {
46 	kvmclock = 0;
47 	return 0;
48 }
49 early_param("no-kvmclock", parse_no_kvmclock);
50 
51 static int __init parse_no_kvmclock_vsyscall(char *arg)
52 {
53 	kvmclock_vsyscall = 0;
54 	return 0;
55 }
56 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
57 
58 /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
59 #define HV_CLOCK_SIZE	(sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS)
60 #define HVC_BOOT_ARRAY_SIZE \
61 	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
62 
63 static struct pvclock_vsyscall_time_info
64 			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __aligned(PAGE_SIZE);
65 static struct pvclock_wall_clock wall_clock;
66 static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
67 
68 static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void)
69 {
70 	return &this_cpu_read(hv_clock_per_cpu)->pvti;
71 }
72 
73 static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void)
74 {
75 	return this_cpu_read(hv_clock_per_cpu);
76 }
77 
78 /*
79  * The wallclock is the time of day when we booted. Since then, some time may
80  * have elapsed since the hypervisor wrote the data. So we try to account for
81  * that with system time
82  */
83 static void kvm_get_wallclock(struct timespec64 *now)
84 {
85 	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
86 	preempt_disable();
87 	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
88 	preempt_enable();
89 }
90 
91 static int kvm_set_wallclock(const struct timespec64 *now)
92 {
93 	return -ENODEV;
94 }
95 
96 static u64 kvm_clock_read(void)
97 {
98 	u64 ret;
99 
100 	preempt_disable_notrace();
101 	ret = pvclock_clocksource_read(this_cpu_pvti());
102 	preempt_enable_notrace();
103 	return ret;
104 }
105 
106 static u64 kvm_clock_get_cycles(struct clocksource *cs)
107 {
108 	return kvm_clock_read();
109 }
110 
111 static u64 kvm_sched_clock_read(void)
112 {
113 	return kvm_clock_read() - kvm_sched_clock_offset;
114 }
115 
116 static inline void kvm_sched_clock_init(bool stable)
117 {
118 	if (!stable) {
119 		pv_time_ops.sched_clock = kvm_clock_read;
120 		clear_sched_clock_stable();
121 		return;
122 	}
123 
124 	kvm_sched_clock_offset = kvm_clock_read();
125 	pv_time_ops.sched_clock = kvm_sched_clock_read;
126 
127 	pr_info("kvm-clock: using sched offset of %llu cycles",
128 		kvm_sched_clock_offset);
129 
130 	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
131 		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
132 }
133 
134 /*
135  * If we don't do that, there is the possibility that the guest
136  * will calibrate under heavy load - thus, getting a lower lpj -
137  * and execute the delays themselves without load. This is wrong,
138  * because no delay loop can finish beforehand.
139  * Any heuristics is subject to fail, because ultimately, a large
140  * poll of guests can be running and trouble each other. So we preset
141  * lpj here
142  */
143 static unsigned long kvm_get_tsc_khz(void)
144 {
145 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
146 	return pvclock_tsc_khz(this_cpu_pvti());
147 }
148 
149 static void __init kvm_get_preset_lpj(void)
150 {
151 	unsigned long khz;
152 	u64 lpj;
153 
154 	khz = kvm_get_tsc_khz();
155 
156 	lpj = ((u64)khz * 1000);
157 	do_div(lpj, HZ);
158 	preset_lpj = lpj;
159 }
160 
161 bool kvm_check_and_clear_guest_paused(void)
162 {
163 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
164 	bool ret = false;
165 
166 	if (!src)
167 		return ret;
168 
169 	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
170 		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
171 		pvclock_touch_watchdogs();
172 		ret = true;
173 	}
174 	return ret;
175 }
176 
177 struct clocksource kvm_clock = {
178 	.name	= "kvm-clock",
179 	.read	= kvm_clock_get_cycles,
180 	.rating	= 400,
181 	.mask	= CLOCKSOURCE_MASK(64),
182 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
183 };
184 EXPORT_SYMBOL_GPL(kvm_clock);
185 
186 static void kvm_register_clock(char *txt)
187 {
188 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
189 	u64 pa;
190 
191 	if (!src)
192 		return;
193 
194 	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
195 	wrmsrl(msr_kvm_system_time, pa);
196 	pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
197 }
198 
199 static void kvm_save_sched_clock_state(void)
200 {
201 }
202 
203 static void kvm_restore_sched_clock_state(void)
204 {
205 	kvm_register_clock("primary cpu clock, resume");
206 }
207 
208 #ifdef CONFIG_X86_LOCAL_APIC
209 static void kvm_setup_secondary_clock(void)
210 {
211 	kvm_register_clock("secondary cpu clock");
212 }
213 #endif
214 
215 /*
216  * After the clock is registered, the host will keep writing to the
217  * registered memory location. If the guest happens to shutdown, this memory
218  * won't be valid. In cases like kexec, in which you install a new kernel, this
219  * means a random memory location will be kept being written. So before any
220  * kind of shutdown from our side, we unregister the clock by writing anything
221  * that does not have the 'enable' bit set in the msr
222  */
223 #ifdef CONFIG_KEXEC_CORE
224 static void kvm_crash_shutdown(struct pt_regs *regs)
225 {
226 	native_write_msr(msr_kvm_system_time, 0, 0);
227 	kvm_disable_steal_time();
228 	native_machine_crash_shutdown(regs);
229 }
230 #endif
231 
232 static void kvm_shutdown(void)
233 {
234 	native_write_msr(msr_kvm_system_time, 0, 0);
235 	kvm_disable_steal_time();
236 	native_machine_shutdown();
237 }
238 
239 static int __init kvm_setup_vsyscall_timeinfo(void)
240 {
241 #ifdef CONFIG_X86_64
242 	u8 flags;
243 
244 	if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall)
245 		return 0;
246 
247 	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
248 	if (!(flags & PVCLOCK_TSC_STABLE_BIT))
249 		return 0;
250 
251 	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
252 #endif
253 	return 0;
254 }
255 early_initcall(kvm_setup_vsyscall_timeinfo);
256 
257 static int kvmclock_setup_percpu(unsigned int cpu)
258 {
259 	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
260 
261 	/*
262 	 * The per cpu area setup replicates CPU0 data to all cpu
263 	 * pointers. So carefully check. CPU0 has been set up in init
264 	 * already.
265 	 */
266 	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
267 		return 0;
268 
269 	/* Use the static page for the first CPUs, allocate otherwise */
270 	if (cpu < HVC_BOOT_ARRAY_SIZE)
271 		p = &hv_clock_boot[cpu];
272 	else
273 		p = kzalloc(sizeof(*p), GFP_KERNEL);
274 
275 	per_cpu(hv_clock_per_cpu, cpu) = p;
276 	return p ? 0 : -ENOMEM;
277 }
278 
279 void __init kvmclock_init(void)
280 {
281 	u8 flags;
282 
283 	if (!kvm_para_available() || !kvmclock)
284 		return;
285 
286 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
287 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
288 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
289 	} else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
290 		return;
291 	}
292 
293 	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
294 			      kvmclock_setup_percpu, NULL) < 0) {
295 		return;
296 	}
297 
298 	pr_info("kvm-clock: Using msrs %x and %x",
299 		msr_kvm_system_time, msr_kvm_wall_clock);
300 
301 	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
302 	kvm_register_clock("primary cpu clock");
303 	pvclock_set_pvti_cpu0_va(hv_clock_boot);
304 
305 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
306 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
307 
308 	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
309 	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
310 
311 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
312 	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
313 	x86_platform.get_wallclock = kvm_get_wallclock;
314 	x86_platform.set_wallclock = kvm_set_wallclock;
315 #ifdef CONFIG_X86_LOCAL_APIC
316 	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
317 #endif
318 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
319 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
320 	machine_ops.shutdown  = kvm_shutdown;
321 #ifdef CONFIG_KEXEC_CORE
322 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
323 #endif
324 	kvm_get_preset_lpj();
325 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
326 	pv_info.name = "KVM";
327 }
328