xref: /openbmc/linux/arch/x86/kernel/kvmclock.c (revision 94cdda6b)
1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18 
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/memblock.h>
27 
28 #include <asm/x86_init.h>
29 #include <asm/reboot.h>
30 
31 static int kvmclock = 1;
32 static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
33 static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
34 
35 static int parse_no_kvmclock(char *arg)
36 {
37 	kvmclock = 0;
38 	return 0;
39 }
40 early_param("no-kvmclock", parse_no_kvmclock);
41 
42 /* The hypervisor will put information about time periodically here */
43 static struct pvclock_vsyscall_time_info *hv_clock;
44 static struct pvclock_wall_clock wall_clock;
45 
46 /*
47  * The wallclock is the time of day when we booted. Since then, some time may
48  * have elapsed since the hypervisor wrote the data. So we try to account for
49  * that with system time
50  */
51 static void kvm_get_wallclock(struct timespec *now)
52 {
53 	struct pvclock_vcpu_time_info *vcpu_time;
54 	int low, high;
55 	int cpu;
56 
57 	low = (int)__pa_symbol(&wall_clock);
58 	high = ((u64)__pa_symbol(&wall_clock) >> 32);
59 
60 	native_write_msr(msr_kvm_wall_clock, low, high);
61 
62 	cpu = get_cpu();
63 
64 	vcpu_time = &hv_clock[cpu].pvti;
65 	pvclock_read_wallclock(&wall_clock, vcpu_time, now);
66 
67 	put_cpu();
68 }
69 
70 static int kvm_set_wallclock(const struct timespec *now)
71 {
72 	return -1;
73 }
74 
75 static cycle_t kvm_clock_read(void)
76 {
77 	struct pvclock_vcpu_time_info *src;
78 	cycle_t ret;
79 	int cpu;
80 
81 	preempt_disable_notrace();
82 	cpu = smp_processor_id();
83 	src = &hv_clock[cpu].pvti;
84 	ret = pvclock_clocksource_read(src);
85 	preempt_enable_notrace();
86 	return ret;
87 }
88 
89 static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
90 {
91 	return kvm_clock_read();
92 }
93 
94 /*
95  * If we don't do that, there is the possibility that the guest
96  * will calibrate under heavy load - thus, getting a lower lpj -
97  * and execute the delays themselves without load. This is wrong,
98  * because no delay loop can finish beforehand.
99  * Any heuristics is subject to fail, because ultimately, a large
100  * poll of guests can be running and trouble each other. So we preset
101  * lpj here
102  */
103 static unsigned long kvm_get_tsc_khz(void)
104 {
105 	struct pvclock_vcpu_time_info *src;
106 	int cpu;
107 	unsigned long tsc_khz;
108 
109 	cpu = get_cpu();
110 	src = &hv_clock[cpu].pvti;
111 	tsc_khz = pvclock_tsc_khz(src);
112 	put_cpu();
113 	return tsc_khz;
114 }
115 
116 static void kvm_get_preset_lpj(void)
117 {
118 	unsigned long khz;
119 	u64 lpj;
120 
121 	khz = kvm_get_tsc_khz();
122 
123 	lpj = ((u64)khz * 1000);
124 	do_div(lpj, HZ);
125 	preset_lpj = lpj;
126 }
127 
128 bool kvm_check_and_clear_guest_paused(void)
129 {
130 	bool ret = false;
131 	struct pvclock_vcpu_time_info *src;
132 	int cpu = smp_processor_id();
133 
134 	if (!hv_clock)
135 		return ret;
136 
137 	src = &hv_clock[cpu].pvti;
138 	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
139 		src->flags &= ~PVCLOCK_GUEST_STOPPED;
140 		pvclock_touch_watchdogs();
141 		ret = true;
142 	}
143 
144 	return ret;
145 }
146 
147 static struct clocksource kvm_clock = {
148 	.name = "kvm-clock",
149 	.read = kvm_clock_get_cycles,
150 	.rating = 400,
151 	.mask = CLOCKSOURCE_MASK(64),
152 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
153 };
154 
155 int kvm_register_clock(char *txt)
156 {
157 	int cpu = smp_processor_id();
158 	int low, high, ret;
159 	struct pvclock_vcpu_time_info *src;
160 
161 	if (!hv_clock)
162 		return 0;
163 
164 	src = &hv_clock[cpu].pvti;
165 	low = (int)slow_virt_to_phys(src) | 1;
166 	high = ((u64)slow_virt_to_phys(src) >> 32);
167 	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
168 	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
169 	       cpu, high, low, txt);
170 
171 	return ret;
172 }
173 
174 static void kvm_save_sched_clock_state(void)
175 {
176 }
177 
178 static void kvm_restore_sched_clock_state(void)
179 {
180 	kvm_register_clock("primary cpu clock, resume");
181 }
182 
183 #ifdef CONFIG_X86_LOCAL_APIC
184 static void kvm_setup_secondary_clock(void)
185 {
186 	/*
187 	 * Now that the first cpu already had this clocksource initialized,
188 	 * we shouldn't fail.
189 	 */
190 	WARN_ON(kvm_register_clock("secondary cpu clock"));
191 }
192 #endif
193 
194 /*
195  * After the clock is registered, the host will keep writing to the
196  * registered memory location. If the guest happens to shutdown, this memory
197  * won't be valid. In cases like kexec, in which you install a new kernel, this
198  * means a random memory location will be kept being written. So before any
199  * kind of shutdown from our side, we unregister the clock by writting anything
200  * that does not have the 'enable' bit set in the msr
201  */
202 #ifdef CONFIG_KEXEC
203 static void kvm_crash_shutdown(struct pt_regs *regs)
204 {
205 	native_write_msr(msr_kvm_system_time, 0, 0);
206 	kvm_disable_steal_time();
207 	native_machine_crash_shutdown(regs);
208 }
209 #endif
210 
211 static void kvm_shutdown(void)
212 {
213 	native_write_msr(msr_kvm_system_time, 0, 0);
214 	kvm_disable_steal_time();
215 	native_machine_shutdown();
216 }
217 
218 void __init kvmclock_init(void)
219 {
220 	unsigned long mem;
221 	int size;
222 
223 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
224 
225 	if (!kvm_para_available())
226 		return;
227 
228 	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
229 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
230 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
231 	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
232 		return;
233 
234 	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
235 		msr_kvm_system_time, msr_kvm_wall_clock);
236 
237 	mem = memblock_alloc(size, PAGE_SIZE);
238 	if (!mem)
239 		return;
240 	hv_clock = __va(mem);
241 	memset(hv_clock, 0, size);
242 
243 	if (kvm_register_clock("primary cpu clock")) {
244 		hv_clock = NULL;
245 		memblock_free(mem, size);
246 		return;
247 	}
248 	pv_time_ops.sched_clock = kvm_clock_read;
249 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
250 	x86_platform.get_wallclock = kvm_get_wallclock;
251 	x86_platform.set_wallclock = kvm_set_wallclock;
252 #ifdef CONFIG_X86_LOCAL_APIC
253 	x86_cpuinit.early_percpu_clock_init =
254 		kvm_setup_secondary_clock;
255 #endif
256 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
257 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
258 	machine_ops.shutdown  = kvm_shutdown;
259 #ifdef CONFIG_KEXEC
260 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
261 #endif
262 	kvm_get_preset_lpj();
263 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
264 	pv_info.name = "KVM";
265 
266 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
267 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
268 }
269 
270 int __init kvm_setup_vsyscall_timeinfo(void)
271 {
272 #ifdef CONFIG_X86_64
273 	int cpu;
274 	int ret;
275 	u8 flags;
276 	struct pvclock_vcpu_time_info *vcpu_time;
277 	unsigned int size;
278 
279 	if (!hv_clock)
280 		return 0;
281 
282 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
283 
284 	cpu = get_cpu();
285 
286 	vcpu_time = &hv_clock[cpu].pvti;
287 	flags = pvclock_read_flags(vcpu_time);
288 
289 	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
290 		put_cpu();
291 		return 1;
292 	}
293 
294 	if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
295 		put_cpu();
296 		return ret;
297 	}
298 
299 	put_cpu();
300 
301 	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
302 #endif
303 	return 0;
304 }
305