xref: /openbmc/linux/arch/x86/kernel/kvmclock.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  KVM paravirtual clock driver. A clocksource implementation
3     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
4 */
5 
6 #include <linux/clocksource.h>
7 #include <linux/kvm_para.h>
8 #include <asm/pvclock.h>
9 #include <asm/msr.h>
10 #include <asm/apic.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/cpuhotplug.h>
14 #include <linux/sched.h>
15 #include <linux/sched/clock.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/set_memory.h>
19 
20 #include <asm/hypervisor.h>
21 #include <asm/mem_encrypt.h>
22 #include <asm/x86_init.h>
23 #include <asm/reboot.h>
24 #include <asm/kvmclock.h>
25 
26 static int kvmclock __initdata = 1;
27 static int kvmclock_vsyscall __initdata = 1;
28 static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
29 static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
30 static u64 kvm_sched_clock_offset __ro_after_init;
31 
32 static int __init parse_no_kvmclock(char *arg)
33 {
34 	kvmclock = 0;
35 	return 0;
36 }
37 early_param("no-kvmclock", parse_no_kvmclock);
38 
39 static int __init parse_no_kvmclock_vsyscall(char *arg)
40 {
41 	kvmclock_vsyscall = 0;
42 	return 0;
43 }
44 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
45 
46 /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
47 #define HV_CLOCK_SIZE	(sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS)
48 #define HVC_BOOT_ARRAY_SIZE \
49 	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
50 
51 static struct pvclock_vsyscall_time_info
52 			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
53 static struct pvclock_wall_clock wall_clock __bss_decrypted;
54 static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
55 static struct pvclock_vsyscall_time_info *hvclock_mem;
56 
57 static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void)
58 {
59 	return &this_cpu_read(hv_clock_per_cpu)->pvti;
60 }
61 
62 static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void)
63 {
64 	return this_cpu_read(hv_clock_per_cpu);
65 }
66 
67 /*
68  * The wallclock is the time of day when we booted. Since then, some time may
69  * have elapsed since the hypervisor wrote the data. So we try to account for
70  * that with system time
71  */
72 static void kvm_get_wallclock(struct timespec64 *now)
73 {
74 	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
75 	preempt_disable();
76 	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
77 	preempt_enable();
78 }
79 
80 static int kvm_set_wallclock(const struct timespec64 *now)
81 {
82 	return -ENODEV;
83 }
84 
85 static u64 kvm_clock_read(void)
86 {
87 	u64 ret;
88 
89 	preempt_disable_notrace();
90 	ret = pvclock_clocksource_read(this_cpu_pvti());
91 	preempt_enable_notrace();
92 	return ret;
93 }
94 
95 static u64 kvm_clock_get_cycles(struct clocksource *cs)
96 {
97 	return kvm_clock_read();
98 }
99 
100 static u64 kvm_sched_clock_read(void)
101 {
102 	return kvm_clock_read() - kvm_sched_clock_offset;
103 }
104 
105 static inline void kvm_sched_clock_init(bool stable)
106 {
107 	if (!stable)
108 		clear_sched_clock_stable();
109 	kvm_sched_clock_offset = kvm_clock_read();
110 	pv_ops.time.sched_clock = kvm_sched_clock_read;
111 
112 	pr_info("kvm-clock: using sched offset of %llu cycles",
113 		kvm_sched_clock_offset);
114 
115 	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
116 		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
117 }
118 
119 /*
120  * If we don't do that, there is the possibility that the guest
121  * will calibrate under heavy load - thus, getting a lower lpj -
122  * and execute the delays themselves without load. This is wrong,
123  * because no delay loop can finish beforehand.
124  * Any heuristics is subject to fail, because ultimately, a large
125  * poll of guests can be running and trouble each other. So we preset
126  * lpj here
127  */
128 static unsigned long kvm_get_tsc_khz(void)
129 {
130 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
131 	return pvclock_tsc_khz(this_cpu_pvti());
132 }
133 
134 static void __init kvm_get_preset_lpj(void)
135 {
136 	unsigned long khz;
137 	u64 lpj;
138 
139 	khz = kvm_get_tsc_khz();
140 
141 	lpj = ((u64)khz * 1000);
142 	do_div(lpj, HZ);
143 	preset_lpj = lpj;
144 }
145 
146 bool kvm_check_and_clear_guest_paused(void)
147 {
148 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
149 	bool ret = false;
150 
151 	if (!src)
152 		return ret;
153 
154 	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
155 		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
156 		pvclock_touch_watchdogs();
157 		ret = true;
158 	}
159 	return ret;
160 }
161 
162 struct clocksource kvm_clock = {
163 	.name	= "kvm-clock",
164 	.read	= kvm_clock_get_cycles,
165 	.rating	= 400,
166 	.mask	= CLOCKSOURCE_MASK(64),
167 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
168 };
169 EXPORT_SYMBOL_GPL(kvm_clock);
170 
171 static void kvm_register_clock(char *txt)
172 {
173 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
174 	u64 pa;
175 
176 	if (!src)
177 		return;
178 
179 	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
180 	wrmsrl(msr_kvm_system_time, pa);
181 	pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
182 }
183 
184 static void kvm_save_sched_clock_state(void)
185 {
186 }
187 
188 static void kvm_restore_sched_clock_state(void)
189 {
190 	kvm_register_clock("primary cpu clock, resume");
191 }
192 
193 #ifdef CONFIG_X86_LOCAL_APIC
194 static void kvm_setup_secondary_clock(void)
195 {
196 	kvm_register_clock("secondary cpu clock");
197 }
198 #endif
199 
200 /*
201  * After the clock is registered, the host will keep writing to the
202  * registered memory location. If the guest happens to shutdown, this memory
203  * won't be valid. In cases like kexec, in which you install a new kernel, this
204  * means a random memory location will be kept being written. So before any
205  * kind of shutdown from our side, we unregister the clock by writing anything
206  * that does not have the 'enable' bit set in the msr
207  */
208 #ifdef CONFIG_KEXEC_CORE
209 static void kvm_crash_shutdown(struct pt_regs *regs)
210 {
211 	native_write_msr(msr_kvm_system_time, 0, 0);
212 	kvm_disable_steal_time();
213 	native_machine_crash_shutdown(regs);
214 }
215 #endif
216 
217 static void kvm_shutdown(void)
218 {
219 	native_write_msr(msr_kvm_system_time, 0, 0);
220 	kvm_disable_steal_time();
221 	native_machine_shutdown();
222 }
223 
224 static void __init kvmclock_init_mem(void)
225 {
226 	unsigned long ncpus;
227 	unsigned int order;
228 	struct page *p;
229 	int r;
230 
231 	if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
232 		return;
233 
234 	ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
235 	order = get_order(ncpus * sizeof(*hvclock_mem));
236 
237 	p = alloc_pages(GFP_KERNEL, order);
238 	if (!p) {
239 		pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
240 		return;
241 	}
242 
243 	hvclock_mem = page_address(p);
244 
245 	/*
246 	 * hvclock is shared between the guest and the hypervisor, must
247 	 * be mapped decrypted.
248 	 */
249 	if (sev_active()) {
250 		r = set_memory_decrypted((unsigned long) hvclock_mem,
251 					 1UL << order);
252 		if (r) {
253 			__free_pages(p, order);
254 			hvclock_mem = NULL;
255 			pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
256 			return;
257 		}
258 	}
259 
260 	memset(hvclock_mem, 0, PAGE_SIZE << order);
261 }
262 
263 static int __init kvm_setup_vsyscall_timeinfo(void)
264 {
265 #ifdef CONFIG_X86_64
266 	u8 flags;
267 
268 	if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall)
269 		return 0;
270 
271 	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
272 	if (!(flags & PVCLOCK_TSC_STABLE_BIT))
273 		return 0;
274 
275 	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
276 #endif
277 
278 	kvmclock_init_mem();
279 
280 	return 0;
281 }
282 early_initcall(kvm_setup_vsyscall_timeinfo);
283 
284 static int kvmclock_setup_percpu(unsigned int cpu)
285 {
286 	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
287 
288 	/*
289 	 * The per cpu area setup replicates CPU0 data to all cpu
290 	 * pointers. So carefully check. CPU0 has been set up in init
291 	 * already.
292 	 */
293 	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
294 		return 0;
295 
296 	/* Use the static page for the first CPUs, allocate otherwise */
297 	if (cpu < HVC_BOOT_ARRAY_SIZE)
298 		p = &hv_clock_boot[cpu];
299 	else if (hvclock_mem)
300 		p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
301 	else
302 		return -ENOMEM;
303 
304 	per_cpu(hv_clock_per_cpu, cpu) = p;
305 	return p ? 0 : -ENOMEM;
306 }
307 
308 void __init kvmclock_init(void)
309 {
310 	u8 flags;
311 
312 	if (!kvm_para_available() || !kvmclock)
313 		return;
314 
315 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
316 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
317 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
318 	} else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
319 		return;
320 	}
321 
322 	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
323 			      kvmclock_setup_percpu, NULL) < 0) {
324 		return;
325 	}
326 
327 	pr_info("kvm-clock: Using msrs %x and %x",
328 		msr_kvm_system_time, msr_kvm_wall_clock);
329 
330 	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
331 	kvm_register_clock("primary cpu clock");
332 	pvclock_set_pvti_cpu0_va(hv_clock_boot);
333 
334 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
335 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
336 
337 	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
338 	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
339 
340 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
341 	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
342 	x86_platform.get_wallclock = kvm_get_wallclock;
343 	x86_platform.set_wallclock = kvm_set_wallclock;
344 #ifdef CONFIG_X86_LOCAL_APIC
345 	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
346 #endif
347 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
348 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
349 	machine_ops.shutdown  = kvm_shutdown;
350 #ifdef CONFIG_KEXEC_CORE
351 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
352 #endif
353 	kvm_get_preset_lpj();
354 
355 	/*
356 	 * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
357 	 * with P/T states and does not stop in deep C-states.
358 	 *
359 	 * Invariant TSC exposed by host means kvmclock is not necessary:
360 	 * can use TSC as clocksource.
361 	 *
362 	 */
363 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
364 	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
365 	    !check_tsc_unstable())
366 		kvm_clock.rating = 299;
367 
368 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
369 	pv_info.name = "KVM";
370 }
371