xref: /openbmc/linux/arch/x86/kernel/kvmclock.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18 
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/memblock.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 
30 #include <asm/mem_encrypt.h>
31 #include <asm/x86_init.h>
32 #include <asm/reboot.h>
33 #include <asm/kvmclock.h>
34 
35 static int kvmclock __ro_after_init = 1;
36 static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
37 static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
38 static u64 kvm_sched_clock_offset;
39 
40 static int parse_no_kvmclock(char *arg)
41 {
42 	kvmclock = 0;
43 	return 0;
44 }
45 early_param("no-kvmclock", parse_no_kvmclock);
46 
47 /* The hypervisor will put information about time periodically here */
48 static struct pvclock_vsyscall_time_info *hv_clock;
49 static struct pvclock_wall_clock *wall_clock;
50 
51 /*
52  * The wallclock is the time of day when we booted. Since then, some time may
53  * have elapsed since the hypervisor wrote the data. So we try to account for
54  * that with system time
55  */
56 static void kvm_get_wallclock(struct timespec *now)
57 {
58 	struct pvclock_vcpu_time_info *vcpu_time;
59 	int low, high;
60 	int cpu;
61 
62 	low = (int)slow_virt_to_phys(wall_clock);
63 	high = ((u64)slow_virt_to_phys(wall_clock) >> 32);
64 
65 	native_write_msr(msr_kvm_wall_clock, low, high);
66 
67 	cpu = get_cpu();
68 
69 	vcpu_time = &hv_clock[cpu].pvti;
70 	pvclock_read_wallclock(wall_clock, vcpu_time, now);
71 
72 	put_cpu();
73 }
74 
75 static int kvm_set_wallclock(const struct timespec *now)
76 {
77 	return -ENODEV;
78 }
79 
80 static u64 kvm_clock_read(void)
81 {
82 	struct pvclock_vcpu_time_info *src;
83 	u64 ret;
84 	int cpu;
85 
86 	preempt_disable_notrace();
87 	cpu = smp_processor_id();
88 	src = &hv_clock[cpu].pvti;
89 	ret = pvclock_clocksource_read(src);
90 	preempt_enable_notrace();
91 	return ret;
92 }
93 
94 static u64 kvm_clock_get_cycles(struct clocksource *cs)
95 {
96 	return kvm_clock_read();
97 }
98 
99 static u64 kvm_sched_clock_read(void)
100 {
101 	return kvm_clock_read() - kvm_sched_clock_offset;
102 }
103 
104 static inline void kvm_sched_clock_init(bool stable)
105 {
106 	if (!stable) {
107 		pv_time_ops.sched_clock = kvm_clock_read;
108 		clear_sched_clock_stable();
109 		return;
110 	}
111 
112 	kvm_sched_clock_offset = kvm_clock_read();
113 	pv_time_ops.sched_clock = kvm_sched_clock_read;
114 
115 	printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
116 			kvm_sched_clock_offset);
117 
118 	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
119 	         sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
120 }
121 
122 /*
123  * If we don't do that, there is the possibility that the guest
124  * will calibrate under heavy load - thus, getting a lower lpj -
125  * and execute the delays themselves without load. This is wrong,
126  * because no delay loop can finish beforehand.
127  * Any heuristics is subject to fail, because ultimately, a large
128  * poll of guests can be running and trouble each other. So we preset
129  * lpj here
130  */
131 static unsigned long kvm_get_tsc_khz(void)
132 {
133 	struct pvclock_vcpu_time_info *src;
134 	int cpu;
135 	unsigned long tsc_khz;
136 
137 	cpu = get_cpu();
138 	src = &hv_clock[cpu].pvti;
139 	tsc_khz = pvclock_tsc_khz(src);
140 	put_cpu();
141 	return tsc_khz;
142 }
143 
144 static void kvm_get_preset_lpj(void)
145 {
146 	unsigned long khz;
147 	u64 lpj;
148 
149 	khz = kvm_get_tsc_khz();
150 
151 	lpj = ((u64)khz * 1000);
152 	do_div(lpj, HZ);
153 	preset_lpj = lpj;
154 }
155 
156 bool kvm_check_and_clear_guest_paused(void)
157 {
158 	bool ret = false;
159 	struct pvclock_vcpu_time_info *src;
160 	int cpu = smp_processor_id();
161 
162 	if (!hv_clock)
163 		return ret;
164 
165 	src = &hv_clock[cpu].pvti;
166 	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
167 		src->flags &= ~PVCLOCK_GUEST_STOPPED;
168 		pvclock_touch_watchdogs();
169 		ret = true;
170 	}
171 
172 	return ret;
173 }
174 
175 struct clocksource kvm_clock = {
176 	.name = "kvm-clock",
177 	.read = kvm_clock_get_cycles,
178 	.rating = 400,
179 	.mask = CLOCKSOURCE_MASK(64),
180 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
181 };
182 EXPORT_SYMBOL_GPL(kvm_clock);
183 
184 int kvm_register_clock(char *txt)
185 {
186 	int cpu = smp_processor_id();
187 	int low, high, ret;
188 	struct pvclock_vcpu_time_info *src;
189 
190 	if (!hv_clock)
191 		return 0;
192 
193 	src = &hv_clock[cpu].pvti;
194 	low = (int)slow_virt_to_phys(src) | 1;
195 	high = ((u64)slow_virt_to_phys(src) >> 32);
196 	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
197 	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
198 	       cpu, high, low, txt);
199 
200 	return ret;
201 }
202 
203 static void kvm_save_sched_clock_state(void)
204 {
205 }
206 
207 static void kvm_restore_sched_clock_state(void)
208 {
209 	kvm_register_clock("primary cpu clock, resume");
210 }
211 
212 #ifdef CONFIG_X86_LOCAL_APIC
213 static void kvm_setup_secondary_clock(void)
214 {
215 	/*
216 	 * Now that the first cpu already had this clocksource initialized,
217 	 * we shouldn't fail.
218 	 */
219 	WARN_ON(kvm_register_clock("secondary cpu clock"));
220 }
221 #endif
222 
223 /*
224  * After the clock is registered, the host will keep writing to the
225  * registered memory location. If the guest happens to shutdown, this memory
226  * won't be valid. In cases like kexec, in which you install a new kernel, this
227  * means a random memory location will be kept being written. So before any
228  * kind of shutdown from our side, we unregister the clock by writing anything
229  * that does not have the 'enable' bit set in the msr
230  */
231 #ifdef CONFIG_KEXEC_CORE
232 static void kvm_crash_shutdown(struct pt_regs *regs)
233 {
234 	native_write_msr(msr_kvm_system_time, 0, 0);
235 	kvm_disable_steal_time();
236 	native_machine_crash_shutdown(regs);
237 }
238 #endif
239 
240 static void kvm_shutdown(void)
241 {
242 	native_write_msr(msr_kvm_system_time, 0, 0);
243 	kvm_disable_steal_time();
244 	native_machine_shutdown();
245 }
246 
247 static phys_addr_t __init kvm_memblock_alloc(phys_addr_t size,
248 					     phys_addr_t align)
249 {
250 	phys_addr_t mem;
251 
252 	mem = memblock_alloc(size, align);
253 	if (!mem)
254 		return 0;
255 
256 	if (sev_active()) {
257 		if (early_set_memory_decrypted((unsigned long)__va(mem), size))
258 			goto e_free;
259 	}
260 
261 	return mem;
262 e_free:
263 	memblock_free(mem, size);
264 	return 0;
265 }
266 
267 static void __init kvm_memblock_free(phys_addr_t addr, phys_addr_t size)
268 {
269 	if (sev_active())
270 		early_set_memory_encrypted((unsigned long)__va(addr), size);
271 
272 	memblock_free(addr, size);
273 }
274 
275 void __init kvmclock_init(void)
276 {
277 	struct pvclock_vcpu_time_info *vcpu_time;
278 	unsigned long mem, mem_wall_clock;
279 	int size, cpu, wall_clock_size;
280 	u8 flags;
281 
282 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
283 
284 	if (!kvm_para_available())
285 		return;
286 
287 	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
288 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
289 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
290 	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
291 		return;
292 
293 	wall_clock_size = PAGE_ALIGN(sizeof(struct pvclock_wall_clock));
294 	mem_wall_clock = kvm_memblock_alloc(wall_clock_size, PAGE_SIZE);
295 	if (!mem_wall_clock)
296 		return;
297 
298 	wall_clock = __va(mem_wall_clock);
299 	memset(wall_clock, 0, wall_clock_size);
300 
301 	mem = kvm_memblock_alloc(size, PAGE_SIZE);
302 	if (!mem) {
303 		kvm_memblock_free(mem_wall_clock, wall_clock_size);
304 		wall_clock = NULL;
305 		return;
306 	}
307 
308 	hv_clock = __va(mem);
309 	memset(hv_clock, 0, size);
310 
311 	if (kvm_register_clock("primary cpu clock")) {
312 		hv_clock = NULL;
313 		kvm_memblock_free(mem, size);
314 		kvm_memblock_free(mem_wall_clock, wall_clock_size);
315 		wall_clock = NULL;
316 		return;
317 	}
318 
319 	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
320 		msr_kvm_system_time, msr_kvm_wall_clock);
321 
322 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
323 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
324 
325 	cpu = get_cpu();
326 	vcpu_time = &hv_clock[cpu].pvti;
327 	flags = pvclock_read_flags(vcpu_time);
328 
329 	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
330 	put_cpu();
331 
332 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
333 	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
334 	x86_platform.get_wallclock = kvm_get_wallclock;
335 	x86_platform.set_wallclock = kvm_set_wallclock;
336 #ifdef CONFIG_X86_LOCAL_APIC
337 	x86_cpuinit.early_percpu_clock_init =
338 		kvm_setup_secondary_clock;
339 #endif
340 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
341 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
342 	machine_ops.shutdown  = kvm_shutdown;
343 #ifdef CONFIG_KEXEC_CORE
344 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
345 #endif
346 	kvm_get_preset_lpj();
347 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
348 	pv_info.name = "KVM";
349 }
350 
351 int __init kvm_setup_vsyscall_timeinfo(void)
352 {
353 #ifdef CONFIG_X86_64
354 	int cpu;
355 	u8 flags;
356 	struct pvclock_vcpu_time_info *vcpu_time;
357 	unsigned int size;
358 
359 	if (!hv_clock)
360 		return 0;
361 
362 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
363 
364 	cpu = get_cpu();
365 
366 	vcpu_time = &hv_clock[cpu].pvti;
367 	flags = pvclock_read_flags(vcpu_time);
368 
369 	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
370 		put_cpu();
371 		return 1;
372 	}
373 
374 	pvclock_set_pvti_cpu0_va(hv_clock);
375 	put_cpu();
376 
377 	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
378 #endif
379 	return 0;
380 }
381