xref: /openbmc/linux/arch/x86/kernel/kvmclock.c (revision 64933513)
1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18 
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/memblock.h>
27 #include <linux/sched.h>
28 
29 #include <asm/x86_init.h>
30 #include <asm/reboot.h>
31 
32 static int kvmclock __ro_after_init = 1;
33 static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
34 static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
35 static cycle_t kvm_sched_clock_offset;
36 
37 static int parse_no_kvmclock(char *arg)
38 {
39 	kvmclock = 0;
40 	return 0;
41 }
42 early_param("no-kvmclock", parse_no_kvmclock);
43 
44 /* The hypervisor will put information about time periodically here */
45 static struct pvclock_vsyscall_time_info *hv_clock;
46 static struct pvclock_wall_clock wall_clock;
47 
48 struct pvclock_vsyscall_time_info *pvclock_pvti_cpu0_va(void)
49 {
50 	return hv_clock;
51 }
52 
53 /*
54  * The wallclock is the time of day when we booted. Since then, some time may
55  * have elapsed since the hypervisor wrote the data. So we try to account for
56  * that with system time
57  */
58 static void kvm_get_wallclock(struct timespec *now)
59 {
60 	struct pvclock_vcpu_time_info *vcpu_time;
61 	int low, high;
62 	int cpu;
63 
64 	low = (int)__pa_symbol(&wall_clock);
65 	high = ((u64)__pa_symbol(&wall_clock) >> 32);
66 
67 	native_write_msr(msr_kvm_wall_clock, low, high);
68 
69 	cpu = get_cpu();
70 
71 	vcpu_time = &hv_clock[cpu].pvti;
72 	pvclock_read_wallclock(&wall_clock, vcpu_time, now);
73 
74 	put_cpu();
75 }
76 
77 static int kvm_set_wallclock(const struct timespec *now)
78 {
79 	return -1;
80 }
81 
82 static cycle_t kvm_clock_read(void)
83 {
84 	struct pvclock_vcpu_time_info *src;
85 	cycle_t ret;
86 	int cpu;
87 
88 	preempt_disable_notrace();
89 	cpu = smp_processor_id();
90 	src = &hv_clock[cpu].pvti;
91 	ret = pvclock_clocksource_read(src);
92 	preempt_enable_notrace();
93 	return ret;
94 }
95 
96 static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
97 {
98 	return kvm_clock_read();
99 }
100 
101 static cycle_t kvm_sched_clock_read(void)
102 {
103 	return kvm_clock_read() - kvm_sched_clock_offset;
104 }
105 
106 static inline void kvm_sched_clock_init(bool stable)
107 {
108 	if (!stable) {
109 		pv_time_ops.sched_clock = kvm_clock_read;
110 		return;
111 	}
112 
113 	kvm_sched_clock_offset = kvm_clock_read();
114 	pv_time_ops.sched_clock = kvm_sched_clock_read;
115 	set_sched_clock_stable();
116 
117 	printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
118 			kvm_sched_clock_offset);
119 
120 	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
121 	         sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
122 }
123 
124 /*
125  * If we don't do that, there is the possibility that the guest
126  * will calibrate under heavy load - thus, getting a lower lpj -
127  * and execute the delays themselves without load. This is wrong,
128  * because no delay loop can finish beforehand.
129  * Any heuristics is subject to fail, because ultimately, a large
130  * poll of guests can be running and trouble each other. So we preset
131  * lpj here
132  */
133 static unsigned long kvm_get_tsc_khz(void)
134 {
135 	struct pvclock_vcpu_time_info *src;
136 	int cpu;
137 	unsigned long tsc_khz;
138 
139 	cpu = get_cpu();
140 	src = &hv_clock[cpu].pvti;
141 	tsc_khz = pvclock_tsc_khz(src);
142 	put_cpu();
143 	return tsc_khz;
144 }
145 
146 static void kvm_get_preset_lpj(void)
147 {
148 	unsigned long khz;
149 	u64 lpj;
150 
151 	khz = kvm_get_tsc_khz();
152 
153 	lpj = ((u64)khz * 1000);
154 	do_div(lpj, HZ);
155 	preset_lpj = lpj;
156 }
157 
158 bool kvm_check_and_clear_guest_paused(void)
159 {
160 	bool ret = false;
161 	struct pvclock_vcpu_time_info *src;
162 	int cpu = smp_processor_id();
163 
164 	if (!hv_clock)
165 		return ret;
166 
167 	src = &hv_clock[cpu].pvti;
168 	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
169 		src->flags &= ~PVCLOCK_GUEST_STOPPED;
170 		pvclock_touch_watchdogs();
171 		ret = true;
172 	}
173 
174 	return ret;
175 }
176 
177 static struct clocksource kvm_clock = {
178 	.name = "kvm-clock",
179 	.read = kvm_clock_get_cycles,
180 	.rating = 400,
181 	.mask = CLOCKSOURCE_MASK(64),
182 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
183 };
184 
185 int kvm_register_clock(char *txt)
186 {
187 	int cpu = smp_processor_id();
188 	int low, high, ret;
189 	struct pvclock_vcpu_time_info *src;
190 
191 	if (!hv_clock)
192 		return 0;
193 
194 	src = &hv_clock[cpu].pvti;
195 	low = (int)slow_virt_to_phys(src) | 1;
196 	high = ((u64)slow_virt_to_phys(src) >> 32);
197 	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
198 	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
199 	       cpu, high, low, txt);
200 
201 	return ret;
202 }
203 
204 static void kvm_save_sched_clock_state(void)
205 {
206 }
207 
208 static void kvm_restore_sched_clock_state(void)
209 {
210 	kvm_register_clock("primary cpu clock, resume");
211 }
212 
213 #ifdef CONFIG_X86_LOCAL_APIC
214 static void kvm_setup_secondary_clock(void)
215 {
216 	/*
217 	 * Now that the first cpu already had this clocksource initialized,
218 	 * we shouldn't fail.
219 	 */
220 	WARN_ON(kvm_register_clock("secondary cpu clock"));
221 }
222 #endif
223 
224 /*
225  * After the clock is registered, the host will keep writing to the
226  * registered memory location. If the guest happens to shutdown, this memory
227  * won't be valid. In cases like kexec, in which you install a new kernel, this
228  * means a random memory location will be kept being written. So before any
229  * kind of shutdown from our side, we unregister the clock by writing anything
230  * that does not have the 'enable' bit set in the msr
231  */
232 #ifdef CONFIG_KEXEC_CORE
233 static void kvm_crash_shutdown(struct pt_regs *regs)
234 {
235 	native_write_msr(msr_kvm_system_time, 0, 0);
236 	kvm_disable_steal_time();
237 	native_machine_crash_shutdown(regs);
238 }
239 #endif
240 
241 static void kvm_shutdown(void)
242 {
243 	native_write_msr(msr_kvm_system_time, 0, 0);
244 	kvm_disable_steal_time();
245 	native_machine_shutdown();
246 }
247 
248 void __init kvmclock_init(void)
249 {
250 	struct pvclock_vcpu_time_info *vcpu_time;
251 	unsigned long mem;
252 	int size, cpu;
253 	u8 flags;
254 
255 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
256 
257 	if (!kvm_para_available())
258 		return;
259 
260 	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
261 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
262 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
263 	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
264 		return;
265 
266 	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
267 		msr_kvm_system_time, msr_kvm_wall_clock);
268 
269 	mem = memblock_alloc(size, PAGE_SIZE);
270 	if (!mem)
271 		return;
272 	hv_clock = __va(mem);
273 	memset(hv_clock, 0, size);
274 
275 	if (kvm_register_clock("primary cpu clock")) {
276 		hv_clock = NULL;
277 		memblock_free(mem, size);
278 		return;
279 	}
280 
281 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
282 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
283 
284 	cpu = get_cpu();
285 	vcpu_time = &hv_clock[cpu].pvti;
286 	flags = pvclock_read_flags(vcpu_time);
287 
288 	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
289 	put_cpu();
290 
291 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
292 	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
293 	x86_platform.get_wallclock = kvm_get_wallclock;
294 	x86_platform.set_wallclock = kvm_set_wallclock;
295 #ifdef CONFIG_X86_LOCAL_APIC
296 	x86_cpuinit.early_percpu_clock_init =
297 		kvm_setup_secondary_clock;
298 #endif
299 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
300 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
301 	machine_ops.shutdown  = kvm_shutdown;
302 #ifdef CONFIG_KEXEC_CORE
303 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
304 #endif
305 	kvm_get_preset_lpj();
306 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
307 	pv_info.name = "KVM";
308 }
309 
310 int __init kvm_setup_vsyscall_timeinfo(void)
311 {
312 #ifdef CONFIG_X86_64
313 	int cpu;
314 	u8 flags;
315 	struct pvclock_vcpu_time_info *vcpu_time;
316 	unsigned int size;
317 
318 	if (!hv_clock)
319 		return 0;
320 
321 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
322 
323 	cpu = get_cpu();
324 
325 	vcpu_time = &hv_clock[cpu].pvti;
326 	flags = pvclock_read_flags(vcpu_time);
327 
328 	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
329 		put_cpu();
330 		return 1;
331 	}
332 
333 	put_cpu();
334 
335 	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
336 #endif
337 	return 0;
338 }
339