xref: /openbmc/linux/arch/x86/kernel/kvmclock.c (revision 455f9726)
1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18 
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/memblock.h>
27 
28 #include <asm/x86_init.h>
29 #include <asm/reboot.h>
30 
31 static int kvmclock = 1;
32 static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
33 static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
34 
35 static int parse_no_kvmclock(char *arg)
36 {
37 	kvmclock = 0;
38 	return 0;
39 }
40 early_param("no-kvmclock", parse_no_kvmclock);
41 
42 /* The hypervisor will put information about time periodically here */
43 static struct pvclock_vsyscall_time_info *hv_clock;
44 static struct pvclock_wall_clock wall_clock;
45 
46 /*
47  * The wallclock is the time of day when we booted. Since then, some time may
48  * have elapsed since the hypervisor wrote the data. So we try to account for
49  * that with system time
50  */
51 static void kvm_get_wallclock(struct timespec *now)
52 {
53 	struct pvclock_vcpu_time_info *vcpu_time;
54 	int low, high;
55 	int cpu;
56 
57 	low = (int)__pa_symbol(&wall_clock);
58 	high = ((u64)__pa_symbol(&wall_clock) >> 32);
59 
60 	native_write_msr(msr_kvm_wall_clock, low, high);
61 
62 	preempt_disable();
63 	cpu = smp_processor_id();
64 
65 	vcpu_time = &hv_clock[cpu].pvti;
66 	pvclock_read_wallclock(&wall_clock, vcpu_time, now);
67 
68 	preempt_enable();
69 }
70 
71 static int kvm_set_wallclock(const struct timespec *now)
72 {
73 	return -1;
74 }
75 
76 static cycle_t kvm_clock_read(void)
77 {
78 	struct pvclock_vcpu_time_info *src;
79 	cycle_t ret;
80 	int cpu;
81 
82 	preempt_disable_notrace();
83 	cpu = smp_processor_id();
84 	src = &hv_clock[cpu].pvti;
85 	ret = pvclock_clocksource_read(src);
86 	preempt_enable_notrace();
87 	return ret;
88 }
89 
90 static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
91 {
92 	return kvm_clock_read();
93 }
94 
95 /*
96  * If we don't do that, there is the possibility that the guest
97  * will calibrate under heavy load - thus, getting a lower lpj -
98  * and execute the delays themselves without load. This is wrong,
99  * because no delay loop can finish beforehand.
100  * Any heuristics is subject to fail, because ultimately, a large
101  * poll of guests can be running and trouble each other. So we preset
102  * lpj here
103  */
104 static unsigned long kvm_get_tsc_khz(void)
105 {
106 	struct pvclock_vcpu_time_info *src;
107 	int cpu;
108 	unsigned long tsc_khz;
109 
110 	preempt_disable();
111 	cpu = smp_processor_id();
112 	src = &hv_clock[cpu].pvti;
113 	tsc_khz = pvclock_tsc_khz(src);
114 	preempt_enable();
115 	return tsc_khz;
116 }
117 
118 static void kvm_get_preset_lpj(void)
119 {
120 	unsigned long khz;
121 	u64 lpj;
122 
123 	khz = kvm_get_tsc_khz();
124 
125 	lpj = ((u64)khz * 1000);
126 	do_div(lpj, HZ);
127 	preset_lpj = lpj;
128 }
129 
130 bool kvm_check_and_clear_guest_paused(void)
131 {
132 	bool ret = false;
133 	struct pvclock_vcpu_time_info *src;
134 	int cpu = smp_processor_id();
135 
136 	if (!hv_clock)
137 		return ret;
138 
139 	src = &hv_clock[cpu].pvti;
140 	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
141 		src->flags &= ~PVCLOCK_GUEST_STOPPED;
142 		pvclock_touch_watchdogs();
143 		ret = true;
144 	}
145 
146 	return ret;
147 }
148 
149 static struct clocksource kvm_clock = {
150 	.name = "kvm-clock",
151 	.read = kvm_clock_get_cycles,
152 	.rating = 400,
153 	.mask = CLOCKSOURCE_MASK(64),
154 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
155 };
156 
157 int kvm_register_clock(char *txt)
158 {
159 	int cpu = smp_processor_id();
160 	int low, high, ret;
161 	struct pvclock_vcpu_time_info *src;
162 
163 	if (!hv_clock)
164 		return 0;
165 
166 	src = &hv_clock[cpu].pvti;
167 	low = (int)slow_virt_to_phys(src) | 1;
168 	high = ((u64)slow_virt_to_phys(src) >> 32);
169 	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
170 	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
171 	       cpu, high, low, txt);
172 
173 	return ret;
174 }
175 
176 static void kvm_save_sched_clock_state(void)
177 {
178 }
179 
180 static void kvm_restore_sched_clock_state(void)
181 {
182 	kvm_register_clock("primary cpu clock, resume");
183 }
184 
185 #ifdef CONFIG_X86_LOCAL_APIC
186 static void kvm_setup_secondary_clock(void)
187 {
188 	/*
189 	 * Now that the first cpu already had this clocksource initialized,
190 	 * we shouldn't fail.
191 	 */
192 	WARN_ON(kvm_register_clock("secondary cpu clock"));
193 }
194 #endif
195 
196 /*
197  * After the clock is registered, the host will keep writing to the
198  * registered memory location. If the guest happens to shutdown, this memory
199  * won't be valid. In cases like kexec, in which you install a new kernel, this
200  * means a random memory location will be kept being written. So before any
201  * kind of shutdown from our side, we unregister the clock by writting anything
202  * that does not have the 'enable' bit set in the msr
203  */
204 #ifdef CONFIG_KEXEC
205 static void kvm_crash_shutdown(struct pt_regs *regs)
206 {
207 	native_write_msr(msr_kvm_system_time, 0, 0);
208 	kvm_disable_steal_time();
209 	native_machine_crash_shutdown(regs);
210 }
211 #endif
212 
213 static void kvm_shutdown(void)
214 {
215 	native_write_msr(msr_kvm_system_time, 0, 0);
216 	kvm_disable_steal_time();
217 	native_machine_shutdown();
218 }
219 
220 void __init kvmclock_init(void)
221 {
222 	unsigned long mem;
223 	int size;
224 
225 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
226 
227 	if (!kvm_para_available())
228 		return;
229 
230 	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
231 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
232 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
233 	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
234 		return;
235 
236 	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
237 		msr_kvm_system_time, msr_kvm_wall_clock);
238 
239 	mem = memblock_alloc(size, PAGE_SIZE);
240 	if (!mem)
241 		return;
242 	hv_clock = __va(mem);
243 	memset(hv_clock, 0, size);
244 
245 	if (kvm_register_clock("primary cpu clock")) {
246 		hv_clock = NULL;
247 		memblock_free(mem, size);
248 		return;
249 	}
250 	pv_time_ops.sched_clock = kvm_clock_read;
251 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
252 	x86_platform.get_wallclock = kvm_get_wallclock;
253 	x86_platform.set_wallclock = kvm_set_wallclock;
254 #ifdef CONFIG_X86_LOCAL_APIC
255 	x86_cpuinit.early_percpu_clock_init =
256 		kvm_setup_secondary_clock;
257 #endif
258 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
259 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
260 	machine_ops.shutdown  = kvm_shutdown;
261 #ifdef CONFIG_KEXEC
262 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
263 #endif
264 	kvm_get_preset_lpj();
265 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
266 	pv_info.paravirt_enabled = 1;
267 	pv_info.name = "KVM";
268 
269 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
270 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
271 }
272 
273 int __init kvm_setup_vsyscall_timeinfo(void)
274 {
275 #ifdef CONFIG_X86_64
276 	int cpu;
277 	int ret;
278 	u8 flags;
279 	struct pvclock_vcpu_time_info *vcpu_time;
280 	unsigned int size;
281 
282 	if (!hv_clock)
283 		return 0;
284 
285 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
286 
287 	preempt_disable();
288 	cpu = smp_processor_id();
289 
290 	vcpu_time = &hv_clock[cpu].pvti;
291 	flags = pvclock_read_flags(vcpu_time);
292 
293 	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
294 		preempt_enable();
295 		return 1;
296 	}
297 
298 	if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
299 		preempt_enable();
300 		return ret;
301 	}
302 
303 	preempt_enable();
304 
305 	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
306 #endif
307 	return 0;
308 }
309