xref: /openbmc/linux/arch/x86/kernel/kvmclock.c (revision 1c582c6d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  KVM paravirtual clock driver. A clocksource implementation
3     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
4 */
5 
6 #include <linux/clocksource.h>
7 #include <linux/kvm_para.h>
8 #include <asm/pvclock.h>
9 #include <asm/msr.h>
10 #include <asm/apic.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/cpuhotplug.h>
14 #include <linux/sched.h>
15 #include <linux/sched/clock.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/set_memory.h>
19 #include <linux/cc_platform.h>
20 
21 #include <asm/hypervisor.h>
22 #include <asm/x86_init.h>
23 #include <asm/kvmclock.h>
24 
25 static int kvmclock __initdata = 1;
26 static int kvmclock_vsyscall __initdata = 1;
27 static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
28 static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
29 static u64 kvm_sched_clock_offset __ro_after_init;
30 
31 static int __init parse_no_kvmclock(char *arg)
32 {
33 	kvmclock = 0;
34 	return 0;
35 }
36 early_param("no-kvmclock", parse_no_kvmclock);
37 
38 static int __init parse_no_kvmclock_vsyscall(char *arg)
39 {
40 	kvmclock_vsyscall = 0;
41 	return 0;
42 }
43 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
44 
45 /* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
46 #define HVC_BOOT_ARRAY_SIZE \
47 	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
48 
49 static struct pvclock_vsyscall_time_info
50 			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
51 static struct pvclock_wall_clock wall_clock __bss_decrypted;
52 static struct pvclock_vsyscall_time_info *hvclock_mem;
53 DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
54 EXPORT_PER_CPU_SYMBOL_GPL(hv_clock_per_cpu);
55 
56 /*
57  * The wallclock is the time of day when we booted. Since then, some time may
58  * have elapsed since the hypervisor wrote the data. So we try to account for
59  * that with system time
60  */
61 static void kvm_get_wallclock(struct timespec64 *now)
62 {
63 	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
64 	preempt_disable();
65 	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
66 	preempt_enable();
67 }
68 
69 static int kvm_set_wallclock(const struct timespec64 *now)
70 {
71 	return -ENODEV;
72 }
73 
74 static u64 kvm_clock_read(void)
75 {
76 	u64 ret;
77 
78 	preempt_disable_notrace();
79 	ret = pvclock_clocksource_read(this_cpu_pvti());
80 	preempt_enable_notrace();
81 	return ret;
82 }
83 
84 static u64 kvm_clock_get_cycles(struct clocksource *cs)
85 {
86 	return kvm_clock_read();
87 }
88 
89 static u64 kvm_sched_clock_read(void)
90 {
91 	return kvm_clock_read() - kvm_sched_clock_offset;
92 }
93 
94 static inline void kvm_sched_clock_init(bool stable)
95 {
96 	if (!stable)
97 		clear_sched_clock_stable();
98 	kvm_sched_clock_offset = kvm_clock_read();
99 	paravirt_set_sched_clock(kvm_sched_clock_read);
100 
101 	pr_info("kvm-clock: using sched offset of %llu cycles",
102 		kvm_sched_clock_offset);
103 
104 	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
105 		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
106 }
107 
108 /*
109  * If we don't do that, there is the possibility that the guest
110  * will calibrate under heavy load - thus, getting a lower lpj -
111  * and execute the delays themselves without load. This is wrong,
112  * because no delay loop can finish beforehand.
113  * Any heuristics is subject to fail, because ultimately, a large
114  * poll of guests can be running and trouble each other. So we preset
115  * lpj here
116  */
117 static unsigned long kvm_get_tsc_khz(void)
118 {
119 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
120 	return pvclock_tsc_khz(this_cpu_pvti());
121 }
122 
123 static void __init kvm_get_preset_lpj(void)
124 {
125 	unsigned long khz;
126 	u64 lpj;
127 
128 	khz = kvm_get_tsc_khz();
129 
130 	lpj = ((u64)khz * 1000);
131 	do_div(lpj, HZ);
132 	preset_lpj = lpj;
133 }
134 
135 bool kvm_check_and_clear_guest_paused(void)
136 {
137 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
138 	bool ret = false;
139 
140 	if (!src)
141 		return ret;
142 
143 	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
144 		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
145 		pvclock_touch_watchdogs();
146 		ret = true;
147 	}
148 	return ret;
149 }
150 
151 static int kvm_cs_enable(struct clocksource *cs)
152 {
153 	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
154 	return 0;
155 }
156 
157 struct clocksource kvm_clock = {
158 	.name	= "kvm-clock",
159 	.read	= kvm_clock_get_cycles,
160 	.rating	= 400,
161 	.mask	= CLOCKSOURCE_MASK(64),
162 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
163 	.enable	= kvm_cs_enable,
164 };
165 EXPORT_SYMBOL_GPL(kvm_clock);
166 
167 static void kvm_register_clock(char *txt)
168 {
169 	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
170 	u64 pa;
171 
172 	if (!src)
173 		return;
174 
175 	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
176 	wrmsrl(msr_kvm_system_time, pa);
177 	pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
178 }
179 
180 static void kvm_save_sched_clock_state(void)
181 {
182 }
183 
184 static void kvm_restore_sched_clock_state(void)
185 {
186 	kvm_register_clock("primary cpu clock, resume");
187 }
188 
189 #ifdef CONFIG_X86_LOCAL_APIC
190 static void kvm_setup_secondary_clock(void)
191 {
192 	kvm_register_clock("secondary cpu clock");
193 }
194 #endif
195 
196 void kvmclock_disable(void)
197 {
198 	native_write_msr(msr_kvm_system_time, 0, 0);
199 }
200 
201 static void __init kvmclock_init_mem(void)
202 {
203 	unsigned long ncpus;
204 	unsigned int order;
205 	struct page *p;
206 	int r;
207 
208 	if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
209 		return;
210 
211 	ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
212 	order = get_order(ncpus * sizeof(*hvclock_mem));
213 
214 	p = alloc_pages(GFP_KERNEL, order);
215 	if (!p) {
216 		pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
217 		return;
218 	}
219 
220 	hvclock_mem = page_address(p);
221 
222 	/*
223 	 * hvclock is shared between the guest and the hypervisor, must
224 	 * be mapped decrypted.
225 	 */
226 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
227 		r = set_memory_decrypted((unsigned long) hvclock_mem,
228 					 1UL << order);
229 		if (r) {
230 			__free_pages(p, order);
231 			hvclock_mem = NULL;
232 			pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
233 			return;
234 		}
235 	}
236 
237 	memset(hvclock_mem, 0, PAGE_SIZE << order);
238 }
239 
240 static int __init kvm_setup_vsyscall_timeinfo(void)
241 {
242 	kvmclock_init_mem();
243 
244 #ifdef CONFIG_X86_64
245 	if (per_cpu(hv_clock_per_cpu, 0) && kvmclock_vsyscall) {
246 		u8 flags;
247 
248 		flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
249 		if (!(flags & PVCLOCK_TSC_STABLE_BIT))
250 			return 0;
251 
252 		kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
253 	}
254 #endif
255 
256 	return 0;
257 }
258 early_initcall(kvm_setup_vsyscall_timeinfo);
259 
260 static int kvmclock_setup_percpu(unsigned int cpu)
261 {
262 	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
263 
264 	/*
265 	 * The per cpu area setup replicates CPU0 data to all cpu
266 	 * pointers. So carefully check. CPU0 has been set up in init
267 	 * already.
268 	 */
269 	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
270 		return 0;
271 
272 	/* Use the static page for the first CPUs, allocate otherwise */
273 	if (cpu < HVC_BOOT_ARRAY_SIZE)
274 		p = &hv_clock_boot[cpu];
275 	else if (hvclock_mem)
276 		p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
277 	else
278 		return -ENOMEM;
279 
280 	per_cpu(hv_clock_per_cpu, cpu) = p;
281 	return p ? 0 : -ENOMEM;
282 }
283 
284 void __init kvmclock_init(void)
285 {
286 	u8 flags;
287 
288 	if (!kvm_para_available() || !kvmclock)
289 		return;
290 
291 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
292 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
293 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
294 	} else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
295 		return;
296 	}
297 
298 	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
299 			      kvmclock_setup_percpu, NULL) < 0) {
300 		return;
301 	}
302 
303 	pr_info("kvm-clock: Using msrs %x and %x",
304 		msr_kvm_system_time, msr_kvm_wall_clock);
305 
306 	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
307 	kvm_register_clock("primary cpu clock");
308 	pvclock_set_pvti_cpu0_va(hv_clock_boot);
309 
310 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
311 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
312 
313 	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
314 	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
315 
316 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
317 	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
318 	x86_platform.get_wallclock = kvm_get_wallclock;
319 	x86_platform.set_wallclock = kvm_set_wallclock;
320 #ifdef CONFIG_X86_LOCAL_APIC
321 	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
322 #endif
323 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
324 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
325 	kvm_get_preset_lpj();
326 
327 	/*
328 	 * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
329 	 * with P/T states and does not stop in deep C-states.
330 	 *
331 	 * Invariant TSC exposed by host means kvmclock is not necessary:
332 	 * can use TSC as clocksource.
333 	 *
334 	 */
335 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
336 	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
337 	    !check_tsc_unstable())
338 		kvm_clock.rating = 299;
339 
340 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
341 	pv_info.name = "KVM";
342 }
343