xref: /openbmc/linux/arch/x86/kernel/kvm.c (revision eb3fcf00)
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22 
23 #include <linux/context_tracking.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/kvm_para.h>
27 #include <linux/cpu.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/hardirq.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/hash.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/kprobes.h>
37 #include <linux/debugfs.h>
38 #include <linux/nmi.h>
39 #include <asm/timer.h>
40 #include <asm/cpu.h>
41 #include <asm/traps.h>
42 #include <asm/desc.h>
43 #include <asm/tlbflush.h>
44 #include <asm/idle.h>
45 #include <asm/apic.h>
46 #include <asm/apicdef.h>
47 #include <asm/hypervisor.h>
48 #include <asm/kvm_guest.h>
49 
50 static int kvmapf = 1;
51 
52 static int parse_no_kvmapf(char *arg)
53 {
54         kvmapf = 0;
55         return 0;
56 }
57 
58 early_param("no-kvmapf", parse_no_kvmapf);
59 
60 static int steal_acc = 1;
61 static int parse_no_stealacc(char *arg)
62 {
63         steal_acc = 0;
64         return 0;
65 }
66 
67 early_param("no-steal-acc", parse_no_stealacc);
68 
69 static int kvmclock_vsyscall = 1;
70 static int parse_no_kvmclock_vsyscall(char *arg)
71 {
72         kvmclock_vsyscall = 0;
73         return 0;
74 }
75 
76 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
77 
78 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
79 static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
80 static int has_steal_clock = 0;
81 
82 /*
83  * No need for any "IO delay" on KVM
84  */
85 static void kvm_io_delay(void)
86 {
87 }
88 
89 #define KVM_TASK_SLEEP_HASHBITS 8
90 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
91 
92 struct kvm_task_sleep_node {
93 	struct hlist_node link;
94 	wait_queue_head_t wq;
95 	u32 token;
96 	int cpu;
97 	bool halted;
98 };
99 
100 static struct kvm_task_sleep_head {
101 	spinlock_t lock;
102 	struct hlist_head list;
103 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
104 
105 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
106 						  u32 token)
107 {
108 	struct hlist_node *p;
109 
110 	hlist_for_each(p, &b->list) {
111 		struct kvm_task_sleep_node *n =
112 			hlist_entry(p, typeof(*n), link);
113 		if (n->token == token)
114 			return n;
115 	}
116 
117 	return NULL;
118 }
119 
120 void kvm_async_pf_task_wait(u32 token)
121 {
122 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
123 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
124 	struct kvm_task_sleep_node n, *e;
125 	DEFINE_WAIT(wait);
126 
127 	rcu_irq_enter();
128 
129 	spin_lock(&b->lock);
130 	e = _find_apf_task(b, token);
131 	if (e) {
132 		/* dummy entry exist -> wake up was delivered ahead of PF */
133 		hlist_del(&e->link);
134 		kfree(e);
135 		spin_unlock(&b->lock);
136 
137 		rcu_irq_exit();
138 		return;
139 	}
140 
141 	n.token = token;
142 	n.cpu = smp_processor_id();
143 	n.halted = is_idle_task(current) || preempt_count() > 1;
144 	init_waitqueue_head(&n.wq);
145 	hlist_add_head(&n.link, &b->list);
146 	spin_unlock(&b->lock);
147 
148 	for (;;) {
149 		if (!n.halted)
150 			prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
151 		if (hlist_unhashed(&n.link))
152 			break;
153 
154 		if (!n.halted) {
155 			local_irq_enable();
156 			schedule();
157 			local_irq_disable();
158 		} else {
159 			/*
160 			 * We cannot reschedule. So halt.
161 			 */
162 			rcu_irq_exit();
163 			native_safe_halt();
164 			rcu_irq_enter();
165 			local_irq_disable();
166 		}
167 	}
168 	if (!n.halted)
169 		finish_wait(&n.wq, &wait);
170 
171 	rcu_irq_exit();
172 	return;
173 }
174 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
175 
176 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
177 {
178 	hlist_del_init(&n->link);
179 	if (n->halted)
180 		smp_send_reschedule(n->cpu);
181 	else if (waitqueue_active(&n->wq))
182 		wake_up(&n->wq);
183 }
184 
185 static void apf_task_wake_all(void)
186 {
187 	int i;
188 
189 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
190 		struct hlist_node *p, *next;
191 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
192 		spin_lock(&b->lock);
193 		hlist_for_each_safe(p, next, &b->list) {
194 			struct kvm_task_sleep_node *n =
195 				hlist_entry(p, typeof(*n), link);
196 			if (n->cpu == smp_processor_id())
197 				apf_task_wake_one(n);
198 		}
199 		spin_unlock(&b->lock);
200 	}
201 }
202 
203 void kvm_async_pf_task_wake(u32 token)
204 {
205 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
206 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
207 	struct kvm_task_sleep_node *n;
208 
209 	if (token == ~0) {
210 		apf_task_wake_all();
211 		return;
212 	}
213 
214 again:
215 	spin_lock(&b->lock);
216 	n = _find_apf_task(b, token);
217 	if (!n) {
218 		/*
219 		 * async PF was not yet handled.
220 		 * Add dummy entry for the token.
221 		 */
222 		n = kzalloc(sizeof(*n), GFP_ATOMIC);
223 		if (!n) {
224 			/*
225 			 * Allocation failed! Busy wait while other cpu
226 			 * handles async PF.
227 			 */
228 			spin_unlock(&b->lock);
229 			cpu_relax();
230 			goto again;
231 		}
232 		n->token = token;
233 		n->cpu = smp_processor_id();
234 		init_waitqueue_head(&n->wq);
235 		hlist_add_head(&n->link, &b->list);
236 	} else
237 		apf_task_wake_one(n);
238 	spin_unlock(&b->lock);
239 	return;
240 }
241 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
242 
243 u32 kvm_read_and_reset_pf_reason(void)
244 {
245 	u32 reason = 0;
246 
247 	if (__this_cpu_read(apf_reason.enabled)) {
248 		reason = __this_cpu_read(apf_reason.reason);
249 		__this_cpu_write(apf_reason.reason, 0);
250 	}
251 
252 	return reason;
253 }
254 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
255 NOKPROBE_SYMBOL(kvm_read_and_reset_pf_reason);
256 
257 dotraplinkage void
258 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
259 {
260 	enum ctx_state prev_state;
261 
262 	switch (kvm_read_and_reset_pf_reason()) {
263 	default:
264 		trace_do_page_fault(regs, error_code);
265 		break;
266 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
267 		/* page is swapped out by the host. */
268 		prev_state = exception_enter();
269 		exit_idle();
270 		kvm_async_pf_task_wait((u32)read_cr2());
271 		exception_exit(prev_state);
272 		break;
273 	case KVM_PV_REASON_PAGE_READY:
274 		rcu_irq_enter();
275 		exit_idle();
276 		kvm_async_pf_task_wake((u32)read_cr2());
277 		rcu_irq_exit();
278 		break;
279 	}
280 }
281 NOKPROBE_SYMBOL(do_async_page_fault);
282 
283 static void __init paravirt_ops_setup(void)
284 {
285 	pv_info.name = "KVM";
286 
287 	/*
288 	 * KVM isn't paravirt in the sense of paravirt_enabled.  A KVM
289 	 * guest kernel works like a bare metal kernel with additional
290 	 * features, and paravirt_enabled is about features that are
291 	 * missing.
292 	 */
293 	pv_info.paravirt_enabled = 0;
294 
295 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
296 		pv_cpu_ops.io_delay = kvm_io_delay;
297 
298 #ifdef CONFIG_X86_IO_APIC
299 	no_timer_check = 1;
300 #endif
301 }
302 
303 static void kvm_register_steal_time(void)
304 {
305 	int cpu = smp_processor_id();
306 	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
307 
308 	if (!has_steal_clock)
309 		return;
310 
311 	memset(st, 0, sizeof(*st));
312 
313 	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
314 	pr_info("kvm-stealtime: cpu %d, msr %llx\n",
315 		cpu, (unsigned long long) slow_virt_to_phys(st));
316 }
317 
318 static DEFINE_PER_CPU(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
319 
320 static void kvm_guest_apic_eoi_write(u32 reg, u32 val)
321 {
322 	/**
323 	 * This relies on __test_and_clear_bit to modify the memory
324 	 * in a way that is atomic with respect to the local CPU.
325 	 * The hypervisor only accesses this memory from the local CPU so
326 	 * there's no need for lock or memory barriers.
327 	 * An optimization barrier is implied in apic write.
328 	 */
329 	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
330 		return;
331 	apic_write(APIC_EOI, APIC_EOI_ACK);
332 }
333 
334 static void kvm_guest_cpu_init(void)
335 {
336 	if (!kvm_para_available())
337 		return;
338 
339 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
340 		u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
341 
342 #ifdef CONFIG_PREEMPT
343 		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
344 #endif
345 		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
346 		__this_cpu_write(apf_reason.enabled, 1);
347 		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
348 		       smp_processor_id());
349 	}
350 
351 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
352 		unsigned long pa;
353 		/* Size alignment is implied but just to make it explicit. */
354 		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
355 		__this_cpu_write(kvm_apic_eoi, 0);
356 		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
357 			| KVM_MSR_ENABLED;
358 		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
359 	}
360 
361 	if (has_steal_clock)
362 		kvm_register_steal_time();
363 }
364 
365 static void kvm_pv_disable_apf(void)
366 {
367 	if (!__this_cpu_read(apf_reason.enabled))
368 		return;
369 
370 	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
371 	__this_cpu_write(apf_reason.enabled, 0);
372 
373 	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
374 	       smp_processor_id());
375 }
376 
377 static void kvm_pv_guest_cpu_reboot(void *unused)
378 {
379 	/*
380 	 * We disable PV EOI before we load a new kernel by kexec,
381 	 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
382 	 * New kernel can re-enable when it boots.
383 	 */
384 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
385 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
386 	kvm_pv_disable_apf();
387 	kvm_disable_steal_time();
388 }
389 
390 static int kvm_pv_reboot_notify(struct notifier_block *nb,
391 				unsigned long code, void *unused)
392 {
393 	if (code == SYS_RESTART)
394 		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
395 	return NOTIFY_DONE;
396 }
397 
398 static struct notifier_block kvm_pv_reboot_nb = {
399 	.notifier_call = kvm_pv_reboot_notify,
400 };
401 
402 static u64 kvm_steal_clock(int cpu)
403 {
404 	u64 steal;
405 	struct kvm_steal_time *src;
406 	int version;
407 
408 	src = &per_cpu(steal_time, cpu);
409 	do {
410 		version = src->version;
411 		rmb();
412 		steal = src->steal;
413 		rmb();
414 	} while ((version & 1) || (version != src->version));
415 
416 	return steal;
417 }
418 
419 void kvm_disable_steal_time(void)
420 {
421 	if (!has_steal_clock)
422 		return;
423 
424 	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
425 }
426 
427 #ifdef CONFIG_SMP
428 static void __init kvm_smp_prepare_boot_cpu(void)
429 {
430 	kvm_guest_cpu_init();
431 	native_smp_prepare_boot_cpu();
432 	kvm_spinlock_init();
433 }
434 
435 static void kvm_guest_cpu_online(void *dummy)
436 {
437 	kvm_guest_cpu_init();
438 }
439 
440 static void kvm_guest_cpu_offline(void *dummy)
441 {
442 	kvm_disable_steal_time();
443 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
444 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
445 	kvm_pv_disable_apf();
446 	apf_task_wake_all();
447 }
448 
449 static int kvm_cpu_notify(struct notifier_block *self, unsigned long action,
450 			  void *hcpu)
451 {
452 	int cpu = (unsigned long)hcpu;
453 	switch (action) {
454 	case CPU_ONLINE:
455 	case CPU_DOWN_FAILED:
456 	case CPU_ONLINE_FROZEN:
457 		smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
458 		break;
459 	case CPU_DOWN_PREPARE:
460 	case CPU_DOWN_PREPARE_FROZEN:
461 		smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
462 		break;
463 	default:
464 		break;
465 	}
466 	return NOTIFY_OK;
467 }
468 
469 static struct notifier_block kvm_cpu_notifier = {
470         .notifier_call  = kvm_cpu_notify,
471 };
472 #endif
473 
474 static void __init kvm_apf_trap_init(void)
475 {
476 	set_intr_gate(14, async_page_fault);
477 }
478 
479 void __init kvm_guest_init(void)
480 {
481 	int i;
482 
483 	if (!kvm_para_available())
484 		return;
485 
486 	paravirt_ops_setup();
487 	register_reboot_notifier(&kvm_pv_reboot_nb);
488 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
489 		spin_lock_init(&async_pf_sleepers[i].lock);
490 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
491 		x86_init.irqs.trap_init = kvm_apf_trap_init;
492 
493 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
494 		has_steal_clock = 1;
495 		pv_time_ops.steal_clock = kvm_steal_clock;
496 	}
497 
498 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
499 		apic_set_eoi_write(kvm_guest_apic_eoi_write);
500 
501 	if (kvmclock_vsyscall)
502 		kvm_setup_vsyscall_timeinfo();
503 
504 #ifdef CONFIG_SMP
505 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
506 	register_cpu_notifier(&kvm_cpu_notifier);
507 #else
508 	kvm_guest_cpu_init();
509 #endif
510 
511 	/*
512 	 * Hard lockup detection is enabled by default. Disable it, as guests
513 	 * can get false positives too easily, for example if the host is
514 	 * overcommitted.
515 	 */
516 	hardlockup_detector_disable();
517 }
518 
519 static noinline uint32_t __kvm_cpuid_base(void)
520 {
521 	if (boot_cpu_data.cpuid_level < 0)
522 		return 0;	/* So we don't blow up on old processors */
523 
524 	if (cpu_has_hypervisor)
525 		return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
526 
527 	return 0;
528 }
529 
530 static inline uint32_t kvm_cpuid_base(void)
531 {
532 	static int kvm_cpuid_base = -1;
533 
534 	if (kvm_cpuid_base == -1)
535 		kvm_cpuid_base = __kvm_cpuid_base();
536 
537 	return kvm_cpuid_base;
538 }
539 
540 bool kvm_para_available(void)
541 {
542 	return kvm_cpuid_base() != 0;
543 }
544 EXPORT_SYMBOL_GPL(kvm_para_available);
545 
546 unsigned int kvm_arch_para_features(void)
547 {
548 	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
549 }
550 
551 static uint32_t __init kvm_detect(void)
552 {
553 	return kvm_cpuid_base();
554 }
555 
556 const struct hypervisor_x86 x86_hyper_kvm __refconst = {
557 	.name			= "KVM",
558 	.detect			= kvm_detect,
559 	.x2apic_available	= kvm_para_available,
560 };
561 EXPORT_SYMBOL_GPL(x86_hyper_kvm);
562 
563 static __init int activate_jump_labels(void)
564 {
565 	if (has_steal_clock) {
566 		static_key_slow_inc(&paravirt_steal_enabled);
567 		if (steal_acc)
568 			static_key_slow_inc(&paravirt_steal_rq_enabled);
569 	}
570 
571 	return 0;
572 }
573 arch_initcall(activate_jump_labels);
574 
575 #ifdef CONFIG_PARAVIRT_SPINLOCKS
576 
577 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
578 static void kvm_kick_cpu(int cpu)
579 {
580 	int apicid;
581 	unsigned long flags = 0;
582 
583 	apicid = per_cpu(x86_cpu_to_apicid, cpu);
584 	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
585 }
586 
587 
588 #ifdef CONFIG_QUEUED_SPINLOCKS
589 
590 #include <asm/qspinlock.h>
591 
592 static void kvm_wait(u8 *ptr, u8 val)
593 {
594 	unsigned long flags;
595 
596 	if (in_nmi())
597 		return;
598 
599 	local_irq_save(flags);
600 
601 	if (READ_ONCE(*ptr) != val)
602 		goto out;
603 
604 	/*
605 	 * halt until it's our turn and kicked. Note that we do safe halt
606 	 * for irq enabled case to avoid hang when lock info is overwritten
607 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
608 	 */
609 	if (arch_irqs_disabled_flags(flags))
610 		halt();
611 	else
612 		safe_halt();
613 
614 out:
615 	local_irq_restore(flags);
616 }
617 
618 #else /* !CONFIG_QUEUED_SPINLOCKS */
619 
620 enum kvm_contention_stat {
621 	TAKEN_SLOW,
622 	TAKEN_SLOW_PICKUP,
623 	RELEASED_SLOW,
624 	RELEASED_SLOW_KICKED,
625 	NR_CONTENTION_STATS
626 };
627 
628 #ifdef CONFIG_KVM_DEBUG_FS
629 #define HISTO_BUCKETS	30
630 
631 static struct kvm_spinlock_stats
632 {
633 	u32 contention_stats[NR_CONTENTION_STATS];
634 	u32 histo_spin_blocked[HISTO_BUCKETS+1];
635 	u64 time_blocked;
636 } spinlock_stats;
637 
638 static u8 zero_stats;
639 
640 static inline void check_zero(void)
641 {
642 	u8 ret;
643 	u8 old;
644 
645 	old = READ_ONCE(zero_stats);
646 	if (unlikely(old)) {
647 		ret = cmpxchg(&zero_stats, old, 0);
648 		/* This ensures only one fellow resets the stat */
649 		if (ret == old)
650 			memset(&spinlock_stats, 0, sizeof(spinlock_stats));
651 	}
652 }
653 
654 static inline void add_stats(enum kvm_contention_stat var, u32 val)
655 {
656 	check_zero();
657 	spinlock_stats.contention_stats[var] += val;
658 }
659 
660 
661 static inline u64 spin_time_start(void)
662 {
663 	return sched_clock();
664 }
665 
666 static void __spin_time_accum(u64 delta, u32 *array)
667 {
668 	unsigned index;
669 
670 	index = ilog2(delta);
671 	check_zero();
672 
673 	if (index < HISTO_BUCKETS)
674 		array[index]++;
675 	else
676 		array[HISTO_BUCKETS]++;
677 }
678 
679 static inline void spin_time_accum_blocked(u64 start)
680 {
681 	u32 delta;
682 
683 	delta = sched_clock() - start;
684 	__spin_time_accum(delta, spinlock_stats.histo_spin_blocked);
685 	spinlock_stats.time_blocked += delta;
686 }
687 
688 static struct dentry *d_spin_debug;
689 static struct dentry *d_kvm_debug;
690 
691 static struct dentry *kvm_init_debugfs(void)
692 {
693 	d_kvm_debug = debugfs_create_dir("kvm-guest", NULL);
694 	if (!d_kvm_debug)
695 		printk(KERN_WARNING "Could not create 'kvm' debugfs directory\n");
696 
697 	return d_kvm_debug;
698 }
699 
700 static int __init kvm_spinlock_debugfs(void)
701 {
702 	struct dentry *d_kvm;
703 
704 	d_kvm = kvm_init_debugfs();
705 	if (d_kvm == NULL)
706 		return -ENOMEM;
707 
708 	d_spin_debug = debugfs_create_dir("spinlocks", d_kvm);
709 
710 	debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats);
711 
712 	debugfs_create_u32("taken_slow", 0444, d_spin_debug,
713 		   &spinlock_stats.contention_stats[TAKEN_SLOW]);
714 	debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug,
715 		   &spinlock_stats.contention_stats[TAKEN_SLOW_PICKUP]);
716 
717 	debugfs_create_u32("released_slow", 0444, d_spin_debug,
718 		   &spinlock_stats.contention_stats[RELEASED_SLOW]);
719 	debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug,
720 		   &spinlock_stats.contention_stats[RELEASED_SLOW_KICKED]);
721 
722 	debugfs_create_u64("time_blocked", 0444, d_spin_debug,
723 			   &spinlock_stats.time_blocked);
724 
725 	debugfs_create_u32_array("histo_blocked", 0444, d_spin_debug,
726 		     spinlock_stats.histo_spin_blocked, HISTO_BUCKETS + 1);
727 
728 	return 0;
729 }
730 fs_initcall(kvm_spinlock_debugfs);
731 #else  /* !CONFIG_KVM_DEBUG_FS */
732 static inline void add_stats(enum kvm_contention_stat var, u32 val)
733 {
734 }
735 
736 static inline u64 spin_time_start(void)
737 {
738 	return 0;
739 }
740 
741 static inline void spin_time_accum_blocked(u64 start)
742 {
743 }
744 #endif  /* CONFIG_KVM_DEBUG_FS */
745 
746 struct kvm_lock_waiting {
747 	struct arch_spinlock *lock;
748 	__ticket_t want;
749 };
750 
751 /* cpus 'waiting' on a spinlock to become available */
752 static cpumask_t waiting_cpus;
753 
754 /* Track spinlock on which a cpu is waiting */
755 static DEFINE_PER_CPU(struct kvm_lock_waiting, klock_waiting);
756 
757 __visible void kvm_lock_spinning(struct arch_spinlock *lock, __ticket_t want)
758 {
759 	struct kvm_lock_waiting *w;
760 	int cpu;
761 	u64 start;
762 	unsigned long flags;
763 	__ticket_t head;
764 
765 	if (in_nmi())
766 		return;
767 
768 	w = this_cpu_ptr(&klock_waiting);
769 	cpu = smp_processor_id();
770 	start = spin_time_start();
771 
772 	/*
773 	 * Make sure an interrupt handler can't upset things in a
774 	 * partially setup state.
775 	 */
776 	local_irq_save(flags);
777 
778 	/*
779 	 * The ordering protocol on this is that the "lock" pointer
780 	 * may only be set non-NULL if the "want" ticket is correct.
781 	 * If we're updating "want", we must first clear "lock".
782 	 */
783 	w->lock = NULL;
784 	smp_wmb();
785 	w->want = want;
786 	smp_wmb();
787 	w->lock = lock;
788 
789 	add_stats(TAKEN_SLOW, 1);
790 
791 	/*
792 	 * This uses set_bit, which is atomic but we should not rely on its
793 	 * reordering gurantees. So barrier is needed after this call.
794 	 */
795 	cpumask_set_cpu(cpu, &waiting_cpus);
796 
797 	barrier();
798 
799 	/*
800 	 * Mark entry to slowpath before doing the pickup test to make
801 	 * sure we don't deadlock with an unlocker.
802 	 */
803 	__ticket_enter_slowpath(lock);
804 
805 	/* make sure enter_slowpath, which is atomic does not cross the read */
806 	smp_mb__after_atomic();
807 
808 	/*
809 	 * check again make sure it didn't become free while
810 	 * we weren't looking.
811 	 */
812 	head = READ_ONCE(lock->tickets.head);
813 	if (__tickets_equal(head, want)) {
814 		add_stats(TAKEN_SLOW_PICKUP, 1);
815 		goto out;
816 	}
817 
818 	/*
819 	 * halt until it's our turn and kicked. Note that we do safe halt
820 	 * for irq enabled case to avoid hang when lock info is overwritten
821 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
822 	 */
823 	if (arch_irqs_disabled_flags(flags))
824 		halt();
825 	else
826 		safe_halt();
827 
828 out:
829 	cpumask_clear_cpu(cpu, &waiting_cpus);
830 	w->lock = NULL;
831 	local_irq_restore(flags);
832 	spin_time_accum_blocked(start);
833 }
834 PV_CALLEE_SAVE_REGS_THUNK(kvm_lock_spinning);
835 
836 /* Kick vcpu waiting on @lock->head to reach value @ticket */
837 static void kvm_unlock_kick(struct arch_spinlock *lock, __ticket_t ticket)
838 {
839 	int cpu;
840 
841 	add_stats(RELEASED_SLOW, 1);
842 	for_each_cpu(cpu, &waiting_cpus) {
843 		const struct kvm_lock_waiting *w = &per_cpu(klock_waiting, cpu);
844 		if (READ_ONCE(w->lock) == lock &&
845 		    READ_ONCE(w->want) == ticket) {
846 			add_stats(RELEASED_SLOW_KICKED, 1);
847 			kvm_kick_cpu(cpu);
848 			break;
849 		}
850 	}
851 }
852 
853 #endif /* !CONFIG_QUEUED_SPINLOCKS */
854 
855 /*
856  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
857  */
858 void __init kvm_spinlock_init(void)
859 {
860 	if (!kvm_para_available())
861 		return;
862 	/* Does host kernel support KVM_FEATURE_PV_UNHALT? */
863 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
864 		return;
865 
866 #ifdef CONFIG_QUEUED_SPINLOCKS
867 	__pv_init_lock_hash();
868 	pv_lock_ops.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
869 	pv_lock_ops.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock);
870 	pv_lock_ops.wait = kvm_wait;
871 	pv_lock_ops.kick = kvm_kick_cpu;
872 #else /* !CONFIG_QUEUED_SPINLOCKS */
873 	pv_lock_ops.lock_spinning = PV_CALLEE_SAVE(kvm_lock_spinning);
874 	pv_lock_ops.unlock_kick = kvm_unlock_kick;
875 #endif
876 }
877 
878 static __init int kvm_spinlock_init_jump(void)
879 {
880 	if (!kvm_para_available())
881 		return 0;
882 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
883 		return 0;
884 
885 	static_key_slow_inc(&paravirt_ticketlocks_enabled);
886 	printk(KERN_INFO "KVM setup paravirtual spinlock\n");
887 
888 	return 0;
889 }
890 early_initcall(kvm_spinlock_init_jump);
891 
892 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
893