1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * KVM paravirt_ops implementation 4 * 5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * Copyright IBM Corporation, 2007 7 * Authors: Anthony Liguori <aliguori@us.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) "kvm-guest: " fmt 11 12 #include <linux/context_tracking.h> 13 #include <linux/init.h> 14 #include <linux/irq.h> 15 #include <linux/kernel.h> 16 #include <linux/kvm_para.h> 17 #include <linux/cpu.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/hardirq.h> 21 #include <linux/notifier.h> 22 #include <linux/reboot.h> 23 #include <linux/hash.h> 24 #include <linux/sched.h> 25 #include <linux/slab.h> 26 #include <linux/kprobes.h> 27 #include <linux/nmi.h> 28 #include <linux/swait.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/cc_platform.h> 31 #include <asm/timer.h> 32 #include <asm/cpu.h> 33 #include <asm/traps.h> 34 #include <asm/desc.h> 35 #include <asm/tlbflush.h> 36 #include <asm/apic.h> 37 #include <asm/apicdef.h> 38 #include <asm/hypervisor.h> 39 #include <asm/tlb.h> 40 #include <asm/cpuidle_haltpoll.h> 41 #include <asm/ptrace.h> 42 #include <asm/reboot.h> 43 #include <asm/svm.h> 44 45 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled); 46 47 static int kvmapf = 1; 48 49 static int __init parse_no_kvmapf(char *arg) 50 { 51 kvmapf = 0; 52 return 0; 53 } 54 55 early_param("no-kvmapf", parse_no_kvmapf); 56 57 static int steal_acc = 1; 58 static int __init parse_no_stealacc(char *arg) 59 { 60 steal_acc = 0; 61 return 0; 62 } 63 64 early_param("no-steal-acc", parse_no_stealacc); 65 66 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64); 67 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible; 68 static int has_steal_clock = 0; 69 70 /* 71 * No need for any "IO delay" on KVM 72 */ 73 static void kvm_io_delay(void) 74 { 75 } 76 77 #define KVM_TASK_SLEEP_HASHBITS 8 78 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS) 79 80 struct kvm_task_sleep_node { 81 struct hlist_node link; 82 struct swait_queue_head wq; 83 u32 token; 84 int cpu; 85 }; 86 87 static struct kvm_task_sleep_head { 88 raw_spinlock_t lock; 89 struct hlist_head list; 90 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE]; 91 92 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b, 93 u32 token) 94 { 95 struct hlist_node *p; 96 97 hlist_for_each(p, &b->list) { 98 struct kvm_task_sleep_node *n = 99 hlist_entry(p, typeof(*n), link); 100 if (n->token == token) 101 return n; 102 } 103 104 return NULL; 105 } 106 107 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n) 108 { 109 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); 110 struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; 111 struct kvm_task_sleep_node *e; 112 113 raw_spin_lock(&b->lock); 114 e = _find_apf_task(b, token); 115 if (e) { 116 /* dummy entry exist -> wake up was delivered ahead of PF */ 117 hlist_del(&e->link); 118 raw_spin_unlock(&b->lock); 119 kfree(e); 120 return false; 121 } 122 123 n->token = token; 124 n->cpu = smp_processor_id(); 125 init_swait_queue_head(&n->wq); 126 hlist_add_head(&n->link, &b->list); 127 raw_spin_unlock(&b->lock); 128 return true; 129 } 130 131 /* 132 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled 133 * @token: Token to identify the sleep node entry 134 * 135 * Invoked from the async pagefault handling code or from the VM exit page 136 * fault handler. In both cases RCU is watching. 137 */ 138 void kvm_async_pf_task_wait_schedule(u32 token) 139 { 140 struct kvm_task_sleep_node n; 141 DECLARE_SWAITQUEUE(wait); 142 143 lockdep_assert_irqs_disabled(); 144 145 if (!kvm_async_pf_queue_task(token, &n)) 146 return; 147 148 for (;;) { 149 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE); 150 if (hlist_unhashed(&n.link)) 151 break; 152 153 local_irq_enable(); 154 schedule(); 155 local_irq_disable(); 156 } 157 finish_swait(&n.wq, &wait); 158 } 159 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule); 160 161 static void apf_task_wake_one(struct kvm_task_sleep_node *n) 162 { 163 hlist_del_init(&n->link); 164 if (swq_has_sleeper(&n->wq)) 165 swake_up_one(&n->wq); 166 } 167 168 static void apf_task_wake_all(void) 169 { 170 int i; 171 172 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) { 173 struct kvm_task_sleep_head *b = &async_pf_sleepers[i]; 174 struct kvm_task_sleep_node *n; 175 struct hlist_node *p, *next; 176 177 raw_spin_lock(&b->lock); 178 hlist_for_each_safe(p, next, &b->list) { 179 n = hlist_entry(p, typeof(*n), link); 180 if (n->cpu == smp_processor_id()) 181 apf_task_wake_one(n); 182 } 183 raw_spin_unlock(&b->lock); 184 } 185 } 186 187 void kvm_async_pf_task_wake(u32 token) 188 { 189 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); 190 struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; 191 struct kvm_task_sleep_node *n; 192 193 if (token == ~0) { 194 apf_task_wake_all(); 195 return; 196 } 197 198 again: 199 raw_spin_lock(&b->lock); 200 n = _find_apf_task(b, token); 201 if (!n) { 202 /* 203 * async PF was not yet handled. 204 * Add dummy entry for the token. 205 */ 206 n = kzalloc(sizeof(*n), GFP_ATOMIC); 207 if (!n) { 208 /* 209 * Allocation failed! Busy wait while other cpu 210 * handles async PF. 211 */ 212 raw_spin_unlock(&b->lock); 213 cpu_relax(); 214 goto again; 215 } 216 n->token = token; 217 n->cpu = smp_processor_id(); 218 init_swait_queue_head(&n->wq); 219 hlist_add_head(&n->link, &b->list); 220 } else { 221 apf_task_wake_one(n); 222 } 223 raw_spin_unlock(&b->lock); 224 return; 225 } 226 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake); 227 228 noinstr u32 kvm_read_and_reset_apf_flags(void) 229 { 230 u32 flags = 0; 231 232 if (__this_cpu_read(apf_reason.enabled)) { 233 flags = __this_cpu_read(apf_reason.flags); 234 __this_cpu_write(apf_reason.flags, 0); 235 } 236 237 return flags; 238 } 239 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags); 240 241 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token) 242 { 243 u32 flags = kvm_read_and_reset_apf_flags(); 244 irqentry_state_t state; 245 246 if (!flags) 247 return false; 248 249 state = irqentry_enter(regs); 250 instrumentation_begin(); 251 252 /* 253 * If the host managed to inject an async #PF into an interrupt 254 * disabled region, then die hard as this is not going to end well 255 * and the host side is seriously broken. 256 */ 257 if (unlikely(!(regs->flags & X86_EFLAGS_IF))) 258 panic("Host injected async #PF in interrupt disabled region\n"); 259 260 if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 261 if (unlikely(!(user_mode(regs)))) 262 panic("Host injected async #PF in kernel mode\n"); 263 /* Page is swapped out by the host. */ 264 kvm_async_pf_task_wait_schedule(token); 265 } else { 266 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags); 267 } 268 269 instrumentation_end(); 270 irqentry_exit(regs, state); 271 return true; 272 } 273 274 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt) 275 { 276 struct pt_regs *old_regs = set_irq_regs(regs); 277 u32 token; 278 279 ack_APIC_irq(); 280 281 inc_irq_stat(irq_hv_callback_count); 282 283 if (__this_cpu_read(apf_reason.enabled)) { 284 token = __this_cpu_read(apf_reason.token); 285 kvm_async_pf_task_wake(token); 286 __this_cpu_write(apf_reason.token, 0); 287 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1); 288 } 289 290 set_irq_regs(old_regs); 291 } 292 293 static void __init paravirt_ops_setup(void) 294 { 295 pv_info.name = "KVM"; 296 297 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) 298 pv_ops.cpu.io_delay = kvm_io_delay; 299 300 #ifdef CONFIG_X86_IO_APIC 301 no_timer_check = 1; 302 #endif 303 } 304 305 static void kvm_register_steal_time(void) 306 { 307 int cpu = smp_processor_id(); 308 struct kvm_steal_time *st = &per_cpu(steal_time, cpu); 309 310 if (!has_steal_clock) 311 return; 312 313 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED)); 314 pr_info("stealtime: cpu %d, msr %llx\n", cpu, 315 (unsigned long long) slow_virt_to_phys(st)); 316 } 317 318 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED; 319 320 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val) 321 { 322 /** 323 * This relies on __test_and_clear_bit to modify the memory 324 * in a way that is atomic with respect to the local CPU. 325 * The hypervisor only accesses this memory from the local CPU so 326 * there's no need for lock or memory barriers. 327 * An optimization barrier is implied in apic write. 328 */ 329 if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi))) 330 return; 331 apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK); 332 } 333 334 static void kvm_guest_cpu_init(void) 335 { 336 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { 337 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); 338 339 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled)); 340 341 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); 342 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 343 344 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT)) 345 pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 346 347 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR); 348 349 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa); 350 __this_cpu_write(apf_reason.enabled, 1); 351 pr_info("setup async PF for cpu %d\n", smp_processor_id()); 352 } 353 354 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) { 355 unsigned long pa; 356 357 /* Size alignment is implied but just to make it explicit. */ 358 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4); 359 __this_cpu_write(kvm_apic_eoi, 0); 360 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi)) 361 | KVM_MSR_ENABLED; 362 wrmsrl(MSR_KVM_PV_EOI_EN, pa); 363 } 364 365 if (has_steal_clock) 366 kvm_register_steal_time(); 367 } 368 369 static void kvm_pv_disable_apf(void) 370 { 371 if (!__this_cpu_read(apf_reason.enabled)) 372 return; 373 374 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0); 375 __this_cpu_write(apf_reason.enabled, 0); 376 377 pr_info("disable async PF for cpu %d\n", smp_processor_id()); 378 } 379 380 static void kvm_disable_steal_time(void) 381 { 382 if (!has_steal_clock) 383 return; 384 385 wrmsr(MSR_KVM_STEAL_TIME, 0, 0); 386 } 387 388 static u64 kvm_steal_clock(int cpu) 389 { 390 u64 steal; 391 struct kvm_steal_time *src; 392 int version; 393 394 src = &per_cpu(steal_time, cpu); 395 do { 396 version = src->version; 397 virt_rmb(); 398 steal = src->steal; 399 virt_rmb(); 400 } while ((version & 1) || (version != src->version)); 401 402 return steal; 403 } 404 405 static inline void __set_percpu_decrypted(void *ptr, unsigned long size) 406 { 407 early_set_memory_decrypted((unsigned long) ptr, size); 408 } 409 410 /* 411 * Iterate through all possible CPUs and map the memory region pointed 412 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once. 413 * 414 * Note: we iterate through all possible CPUs to ensure that CPUs 415 * hotplugged will have their per-cpu variable already mapped as 416 * decrypted. 417 */ 418 static void __init sev_map_percpu_data(void) 419 { 420 int cpu; 421 422 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 423 return; 424 425 for_each_possible_cpu(cpu) { 426 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason)); 427 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time)); 428 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi)); 429 } 430 } 431 432 static void kvm_guest_cpu_offline(bool shutdown) 433 { 434 kvm_disable_steal_time(); 435 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 436 wrmsrl(MSR_KVM_PV_EOI_EN, 0); 437 kvm_pv_disable_apf(); 438 if (!shutdown) 439 apf_task_wake_all(); 440 kvmclock_disable(); 441 } 442 443 static int kvm_cpu_online(unsigned int cpu) 444 { 445 unsigned long flags; 446 447 local_irq_save(flags); 448 kvm_guest_cpu_init(); 449 local_irq_restore(flags); 450 return 0; 451 } 452 453 #ifdef CONFIG_SMP 454 455 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask); 456 457 static bool pv_tlb_flush_supported(void) 458 { 459 return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) && 460 !kvm_para_has_hint(KVM_HINTS_REALTIME) && 461 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)); 462 } 463 464 static bool pv_ipi_supported(void) 465 { 466 return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI); 467 } 468 469 static bool pv_sched_yield_supported(void) 470 { 471 return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) && 472 !kvm_para_has_hint(KVM_HINTS_REALTIME) && 473 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)); 474 } 475 476 #define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG) 477 478 static void __send_ipi_mask(const struct cpumask *mask, int vector) 479 { 480 unsigned long flags; 481 int cpu, apic_id, icr; 482 int min = 0, max = 0; 483 #ifdef CONFIG_X86_64 484 __uint128_t ipi_bitmap = 0; 485 #else 486 u64 ipi_bitmap = 0; 487 #endif 488 long ret; 489 490 if (cpumask_empty(mask)) 491 return; 492 493 local_irq_save(flags); 494 495 switch (vector) { 496 default: 497 icr = APIC_DM_FIXED | vector; 498 break; 499 case NMI_VECTOR: 500 icr = APIC_DM_NMI; 501 break; 502 } 503 504 for_each_cpu(cpu, mask) { 505 apic_id = per_cpu(x86_cpu_to_apicid, cpu); 506 if (!ipi_bitmap) { 507 min = max = apic_id; 508 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) { 509 ipi_bitmap <<= min - apic_id; 510 min = apic_id; 511 } else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) { 512 max = apic_id < max ? max : apic_id; 513 } else { 514 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, 515 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); 516 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", 517 ret); 518 min = max = apic_id; 519 ipi_bitmap = 0; 520 } 521 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap); 522 } 523 524 if (ipi_bitmap) { 525 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, 526 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); 527 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", 528 ret); 529 } 530 531 local_irq_restore(flags); 532 } 533 534 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector) 535 { 536 __send_ipi_mask(mask, vector); 537 } 538 539 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector) 540 { 541 unsigned int this_cpu = smp_processor_id(); 542 struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); 543 const struct cpumask *local_mask; 544 545 cpumask_copy(new_mask, mask); 546 cpumask_clear_cpu(this_cpu, new_mask); 547 local_mask = new_mask; 548 __send_ipi_mask(local_mask, vector); 549 } 550 551 /* 552 * Set the IPI entry points 553 */ 554 static void kvm_setup_pv_ipi(void) 555 { 556 apic->send_IPI_mask = kvm_send_ipi_mask; 557 apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself; 558 pr_info("setup PV IPIs\n"); 559 } 560 561 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask) 562 { 563 int cpu; 564 565 native_send_call_func_ipi(mask); 566 567 /* Make sure other vCPUs get a chance to run if they need to. */ 568 for_each_cpu(cpu, mask) { 569 if (vcpu_is_preempted(cpu)) { 570 kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu)); 571 break; 572 } 573 } 574 } 575 576 static void kvm_flush_tlb_multi(const struct cpumask *cpumask, 577 const struct flush_tlb_info *info) 578 { 579 u8 state; 580 int cpu; 581 struct kvm_steal_time *src; 582 struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); 583 584 cpumask_copy(flushmask, cpumask); 585 /* 586 * We have to call flush only on online vCPUs. And 587 * queue flush_on_enter for pre-empted vCPUs 588 */ 589 for_each_cpu(cpu, flushmask) { 590 /* 591 * The local vCPU is never preempted, so we do not explicitly 592 * skip check for local vCPU - it will never be cleared from 593 * flushmask. 594 */ 595 src = &per_cpu(steal_time, cpu); 596 state = READ_ONCE(src->preempted); 597 if ((state & KVM_VCPU_PREEMPTED)) { 598 if (try_cmpxchg(&src->preempted, &state, 599 state | KVM_VCPU_FLUSH_TLB)) 600 __cpumask_clear_cpu(cpu, flushmask); 601 } 602 } 603 604 native_flush_tlb_multi(flushmask, info); 605 } 606 607 static __init int kvm_alloc_cpumask(void) 608 { 609 int cpu; 610 611 if (!kvm_para_available() || nopv) 612 return 0; 613 614 if (pv_tlb_flush_supported() || pv_ipi_supported()) 615 for_each_possible_cpu(cpu) { 616 zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu), 617 GFP_KERNEL, cpu_to_node(cpu)); 618 } 619 620 return 0; 621 } 622 arch_initcall(kvm_alloc_cpumask); 623 624 static void __init kvm_smp_prepare_boot_cpu(void) 625 { 626 /* 627 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init() 628 * shares the guest physical address with the hypervisor. 629 */ 630 sev_map_percpu_data(); 631 632 kvm_guest_cpu_init(); 633 native_smp_prepare_boot_cpu(); 634 kvm_spinlock_init(); 635 } 636 637 static int kvm_cpu_down_prepare(unsigned int cpu) 638 { 639 unsigned long flags; 640 641 local_irq_save(flags); 642 kvm_guest_cpu_offline(false); 643 local_irq_restore(flags); 644 return 0; 645 } 646 647 #endif 648 649 static int kvm_suspend(void) 650 { 651 kvm_guest_cpu_offline(false); 652 653 return 0; 654 } 655 656 static void kvm_resume(void) 657 { 658 kvm_cpu_online(raw_smp_processor_id()); 659 } 660 661 static struct syscore_ops kvm_syscore_ops = { 662 .suspend = kvm_suspend, 663 .resume = kvm_resume, 664 }; 665 666 static void kvm_pv_guest_cpu_reboot(void *unused) 667 { 668 kvm_guest_cpu_offline(true); 669 } 670 671 static int kvm_pv_reboot_notify(struct notifier_block *nb, 672 unsigned long code, void *unused) 673 { 674 if (code == SYS_RESTART) 675 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1); 676 return NOTIFY_DONE; 677 } 678 679 static struct notifier_block kvm_pv_reboot_nb = { 680 .notifier_call = kvm_pv_reboot_notify, 681 }; 682 683 /* 684 * After a PV feature is registered, the host will keep writing to the 685 * registered memory location. If the guest happens to shutdown, this memory 686 * won't be valid. In cases like kexec, in which you install a new kernel, this 687 * means a random memory location will be kept being written. 688 */ 689 #ifdef CONFIG_KEXEC_CORE 690 static void kvm_crash_shutdown(struct pt_regs *regs) 691 { 692 kvm_guest_cpu_offline(true); 693 native_machine_crash_shutdown(regs); 694 } 695 #endif 696 697 static void __init kvm_guest_init(void) 698 { 699 int i; 700 701 paravirt_ops_setup(); 702 register_reboot_notifier(&kvm_pv_reboot_nb); 703 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) 704 raw_spin_lock_init(&async_pf_sleepers[i].lock); 705 706 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { 707 has_steal_clock = 1; 708 static_call_update(pv_steal_clock, kvm_steal_clock); 709 } 710 711 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 712 apic_set_eoi_write(kvm_guest_apic_eoi_write); 713 714 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { 715 static_branch_enable(&kvm_async_pf_enabled); 716 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt); 717 } 718 719 #ifdef CONFIG_SMP 720 if (pv_tlb_flush_supported()) { 721 pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi; 722 pv_ops.mmu.tlb_remove_table = tlb_remove_table; 723 pr_info("KVM setup pv remote TLB flush\n"); 724 } 725 726 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; 727 if (pv_sched_yield_supported()) { 728 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi; 729 pr_info("setup PV sched yield\n"); 730 } 731 if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online", 732 kvm_cpu_online, kvm_cpu_down_prepare) < 0) 733 pr_err("failed to install cpu hotplug callbacks\n"); 734 #else 735 sev_map_percpu_data(); 736 kvm_guest_cpu_init(); 737 #endif 738 739 #ifdef CONFIG_KEXEC_CORE 740 machine_ops.crash_shutdown = kvm_crash_shutdown; 741 #endif 742 743 register_syscore_ops(&kvm_syscore_ops); 744 745 /* 746 * Hard lockup detection is enabled by default. Disable it, as guests 747 * can get false positives too easily, for example if the host is 748 * overcommitted. 749 */ 750 hardlockup_detector_disable(); 751 } 752 753 static noinline uint32_t __kvm_cpuid_base(void) 754 { 755 if (boot_cpu_data.cpuid_level < 0) 756 return 0; /* So we don't blow up on old processors */ 757 758 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 759 return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0); 760 761 return 0; 762 } 763 764 static inline uint32_t kvm_cpuid_base(void) 765 { 766 static int kvm_cpuid_base = -1; 767 768 if (kvm_cpuid_base == -1) 769 kvm_cpuid_base = __kvm_cpuid_base(); 770 771 return kvm_cpuid_base; 772 } 773 774 bool kvm_para_available(void) 775 { 776 return kvm_cpuid_base() != 0; 777 } 778 EXPORT_SYMBOL_GPL(kvm_para_available); 779 780 unsigned int kvm_arch_para_features(void) 781 { 782 return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES); 783 } 784 785 unsigned int kvm_arch_para_hints(void) 786 { 787 return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES); 788 } 789 EXPORT_SYMBOL_GPL(kvm_arch_para_hints); 790 791 static uint32_t __init kvm_detect(void) 792 { 793 return kvm_cpuid_base(); 794 } 795 796 static void __init kvm_apic_init(void) 797 { 798 #ifdef CONFIG_SMP 799 if (pv_ipi_supported()) 800 kvm_setup_pv_ipi(); 801 #endif 802 } 803 804 static bool __init kvm_msi_ext_dest_id(void) 805 { 806 return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID); 807 } 808 809 static void __init kvm_init_platform(void) 810 { 811 kvmclock_init(); 812 x86_platform.apic_post_init = kvm_apic_init; 813 } 814 815 #if defined(CONFIG_AMD_MEM_ENCRYPT) 816 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs) 817 { 818 /* RAX and CPL are already in the GHCB */ 819 ghcb_set_rbx(ghcb, regs->bx); 820 ghcb_set_rcx(ghcb, regs->cx); 821 ghcb_set_rdx(ghcb, regs->dx); 822 ghcb_set_rsi(ghcb, regs->si); 823 } 824 825 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs) 826 { 827 /* No checking of the return state needed */ 828 return true; 829 } 830 #endif 831 832 const __initconst struct hypervisor_x86 x86_hyper_kvm = { 833 .name = "KVM", 834 .detect = kvm_detect, 835 .type = X86_HYPER_KVM, 836 .init.guest_late_init = kvm_guest_init, 837 .init.x2apic_available = kvm_para_available, 838 .init.msi_ext_dest_id = kvm_msi_ext_dest_id, 839 .init.init_platform = kvm_init_platform, 840 #if defined(CONFIG_AMD_MEM_ENCRYPT) 841 .runtime.sev_es_hcall_prepare = kvm_sev_es_hcall_prepare, 842 .runtime.sev_es_hcall_finish = kvm_sev_es_hcall_finish, 843 #endif 844 }; 845 846 static __init int activate_jump_labels(void) 847 { 848 if (has_steal_clock) { 849 static_key_slow_inc(¶virt_steal_enabled); 850 if (steal_acc) 851 static_key_slow_inc(¶virt_steal_rq_enabled); 852 } 853 854 return 0; 855 } 856 arch_initcall(activate_jump_labels); 857 858 #ifdef CONFIG_PARAVIRT_SPINLOCKS 859 860 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */ 861 static void kvm_kick_cpu(int cpu) 862 { 863 int apicid; 864 unsigned long flags = 0; 865 866 apicid = per_cpu(x86_cpu_to_apicid, cpu); 867 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid); 868 } 869 870 #include <asm/qspinlock.h> 871 872 static void kvm_wait(u8 *ptr, u8 val) 873 { 874 if (in_nmi()) 875 return; 876 877 /* 878 * halt until it's our turn and kicked. Note that we do safe halt 879 * for irq enabled case to avoid hang when lock info is overwritten 880 * in irq spinlock slowpath and no spurious interrupt occur to save us. 881 */ 882 if (irqs_disabled()) { 883 if (READ_ONCE(*ptr) == val) 884 halt(); 885 } else { 886 local_irq_disable(); 887 888 /* safe_halt() will enable IRQ */ 889 if (READ_ONCE(*ptr) == val) 890 safe_halt(); 891 else 892 local_irq_enable(); 893 } 894 } 895 896 #ifdef CONFIG_X86_32 897 __visible bool __kvm_vcpu_is_preempted(long cpu) 898 { 899 struct kvm_steal_time *src = &per_cpu(steal_time, cpu); 900 901 return !!(src->preempted & KVM_VCPU_PREEMPTED); 902 } 903 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted); 904 905 #else 906 907 #include <asm/asm-offsets.h> 908 909 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long); 910 911 /* 912 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and 913 * restoring to/from the stack. 914 */ 915 asm( 916 ".pushsection .text;" 917 ".global __raw_callee_save___kvm_vcpu_is_preempted;" 918 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;" 919 "__raw_callee_save___kvm_vcpu_is_preempted:" 920 "movq __per_cpu_offset(,%rdi,8), %rax;" 921 "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);" 922 "setne %al;" 923 "ret;" 924 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;" 925 ".popsection"); 926 927 #endif 928 929 /* 930 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present. 931 */ 932 void __init kvm_spinlock_init(void) 933 { 934 /* 935 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an 936 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is 937 * preferred over native qspinlock when vCPU is preempted. 938 */ 939 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) { 940 pr_info("PV spinlocks disabled, no host support\n"); 941 return; 942 } 943 944 /* 945 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs 946 * are available. 947 */ 948 if (kvm_para_has_hint(KVM_HINTS_REALTIME)) { 949 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n"); 950 goto out; 951 } 952 953 if (num_possible_cpus() == 1) { 954 pr_info("PV spinlocks disabled, single CPU\n"); 955 goto out; 956 } 957 958 if (nopvspin) { 959 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n"); 960 goto out; 961 } 962 963 pr_info("PV spinlocks enabled\n"); 964 965 __pv_init_lock_hash(); 966 pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath; 967 pv_ops.lock.queued_spin_unlock = 968 PV_CALLEE_SAVE(__pv_queued_spin_unlock); 969 pv_ops.lock.wait = kvm_wait; 970 pv_ops.lock.kick = kvm_kick_cpu; 971 972 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { 973 pv_ops.lock.vcpu_is_preempted = 974 PV_CALLEE_SAVE(__kvm_vcpu_is_preempted); 975 } 976 /* 977 * When PV spinlock is enabled which is preferred over 978 * virt_spin_lock(), virt_spin_lock_key's value is meaningless. 979 * Just disable it anyway. 980 */ 981 out: 982 static_branch_disable(&virt_spin_lock_key); 983 } 984 985 #endif /* CONFIG_PARAVIRT_SPINLOCKS */ 986 987 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL 988 989 static void kvm_disable_host_haltpoll(void *i) 990 { 991 wrmsrl(MSR_KVM_POLL_CONTROL, 0); 992 } 993 994 static void kvm_enable_host_haltpoll(void *i) 995 { 996 wrmsrl(MSR_KVM_POLL_CONTROL, 1); 997 } 998 999 void arch_haltpoll_enable(unsigned int cpu) 1000 { 1001 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) { 1002 pr_err_once("host does not support poll control\n"); 1003 pr_err_once("host upgrade recommended\n"); 1004 return; 1005 } 1006 1007 /* Enable guest halt poll disables host halt poll */ 1008 smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1); 1009 } 1010 EXPORT_SYMBOL_GPL(arch_haltpoll_enable); 1011 1012 void arch_haltpoll_disable(unsigned int cpu) 1013 { 1014 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) 1015 return; 1016 1017 /* Disable guest halt poll enables host halt poll */ 1018 smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1); 1019 } 1020 EXPORT_SYMBOL_GPL(arch_haltpoll_disable); 1021 #endif 1022