xref: /openbmc/linux/arch/x86/kernel/kvm.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * KVM paravirt_ops implementation
4  *
5  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  * Copyright IBM Corporation, 2007
7  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
8  */
9 
10 #define pr_fmt(fmt) "kvm-guest: " fmt
11 
12 #include <linux/context_tracking.h>
13 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/kvm_para.h>
17 #include <linux/cpu.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/hardirq.h>
21 #include <linux/notifier.h>
22 #include <linux/reboot.h>
23 #include <linux/hash.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/kprobes.h>
27 #include <linux/nmi.h>
28 #include <linux/swait.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/cc_platform.h>
31 #include <asm/timer.h>
32 #include <asm/cpu.h>
33 #include <asm/traps.h>
34 #include <asm/desc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/apic.h>
37 #include <asm/apicdef.h>
38 #include <asm/hypervisor.h>
39 #include <asm/tlb.h>
40 #include <asm/cpuidle_haltpoll.h>
41 #include <asm/ptrace.h>
42 #include <asm/reboot.h>
43 #include <asm/svm.h>
44 
45 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
46 
47 static int kvmapf = 1;
48 
49 static int __init parse_no_kvmapf(char *arg)
50 {
51         kvmapf = 0;
52         return 0;
53 }
54 
55 early_param("no-kvmapf", parse_no_kvmapf);
56 
57 static int steal_acc = 1;
58 static int __init parse_no_stealacc(char *arg)
59 {
60         steal_acc = 0;
61         return 0;
62 }
63 
64 early_param("no-steal-acc", parse_no_stealacc);
65 
66 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
67 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
68 static int has_steal_clock = 0;
69 
70 /*
71  * No need for any "IO delay" on KVM
72  */
73 static void kvm_io_delay(void)
74 {
75 }
76 
77 #define KVM_TASK_SLEEP_HASHBITS 8
78 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
79 
80 struct kvm_task_sleep_node {
81 	struct hlist_node link;
82 	struct swait_queue_head wq;
83 	u32 token;
84 	int cpu;
85 };
86 
87 static struct kvm_task_sleep_head {
88 	raw_spinlock_t lock;
89 	struct hlist_head list;
90 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
91 
92 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
93 						  u32 token)
94 {
95 	struct hlist_node *p;
96 
97 	hlist_for_each(p, &b->list) {
98 		struct kvm_task_sleep_node *n =
99 			hlist_entry(p, typeof(*n), link);
100 		if (n->token == token)
101 			return n;
102 	}
103 
104 	return NULL;
105 }
106 
107 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
108 {
109 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
110 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
111 	struct kvm_task_sleep_node *e;
112 
113 	raw_spin_lock(&b->lock);
114 	e = _find_apf_task(b, token);
115 	if (e) {
116 		/* dummy entry exist -> wake up was delivered ahead of PF */
117 		hlist_del(&e->link);
118 		raw_spin_unlock(&b->lock);
119 		kfree(e);
120 		return false;
121 	}
122 
123 	n->token = token;
124 	n->cpu = smp_processor_id();
125 	init_swait_queue_head(&n->wq);
126 	hlist_add_head(&n->link, &b->list);
127 	raw_spin_unlock(&b->lock);
128 	return true;
129 }
130 
131 /*
132  * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
133  * @token:	Token to identify the sleep node entry
134  *
135  * Invoked from the async pagefault handling code or from the VM exit page
136  * fault handler. In both cases RCU is watching.
137  */
138 void kvm_async_pf_task_wait_schedule(u32 token)
139 {
140 	struct kvm_task_sleep_node n;
141 	DECLARE_SWAITQUEUE(wait);
142 
143 	lockdep_assert_irqs_disabled();
144 
145 	if (!kvm_async_pf_queue_task(token, &n))
146 		return;
147 
148 	for (;;) {
149 		prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
150 		if (hlist_unhashed(&n.link))
151 			break;
152 
153 		local_irq_enable();
154 		schedule();
155 		local_irq_disable();
156 	}
157 	finish_swait(&n.wq, &wait);
158 }
159 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
160 
161 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
162 {
163 	hlist_del_init(&n->link);
164 	if (swq_has_sleeper(&n->wq))
165 		swake_up_one(&n->wq);
166 }
167 
168 static void apf_task_wake_all(void)
169 {
170 	int i;
171 
172 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
173 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
174 		struct kvm_task_sleep_node *n;
175 		struct hlist_node *p, *next;
176 
177 		raw_spin_lock(&b->lock);
178 		hlist_for_each_safe(p, next, &b->list) {
179 			n = hlist_entry(p, typeof(*n), link);
180 			if (n->cpu == smp_processor_id())
181 				apf_task_wake_one(n);
182 		}
183 		raw_spin_unlock(&b->lock);
184 	}
185 }
186 
187 void kvm_async_pf_task_wake(u32 token)
188 {
189 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
190 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
191 	struct kvm_task_sleep_node *n;
192 
193 	if (token == ~0) {
194 		apf_task_wake_all();
195 		return;
196 	}
197 
198 again:
199 	raw_spin_lock(&b->lock);
200 	n = _find_apf_task(b, token);
201 	if (!n) {
202 		/*
203 		 * async PF was not yet handled.
204 		 * Add dummy entry for the token.
205 		 */
206 		n = kzalloc(sizeof(*n), GFP_ATOMIC);
207 		if (!n) {
208 			/*
209 			 * Allocation failed! Busy wait while other cpu
210 			 * handles async PF.
211 			 */
212 			raw_spin_unlock(&b->lock);
213 			cpu_relax();
214 			goto again;
215 		}
216 		n->token = token;
217 		n->cpu = smp_processor_id();
218 		init_swait_queue_head(&n->wq);
219 		hlist_add_head(&n->link, &b->list);
220 	} else {
221 		apf_task_wake_one(n);
222 	}
223 	raw_spin_unlock(&b->lock);
224 	return;
225 }
226 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
227 
228 noinstr u32 kvm_read_and_reset_apf_flags(void)
229 {
230 	u32 flags = 0;
231 
232 	if (__this_cpu_read(apf_reason.enabled)) {
233 		flags = __this_cpu_read(apf_reason.flags);
234 		__this_cpu_write(apf_reason.flags, 0);
235 	}
236 
237 	return flags;
238 }
239 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
240 
241 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
242 {
243 	u32 flags = kvm_read_and_reset_apf_flags();
244 	irqentry_state_t state;
245 
246 	if (!flags)
247 		return false;
248 
249 	state = irqentry_enter(regs);
250 	instrumentation_begin();
251 
252 	/*
253 	 * If the host managed to inject an async #PF into an interrupt
254 	 * disabled region, then die hard as this is not going to end well
255 	 * and the host side is seriously broken.
256 	 */
257 	if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
258 		panic("Host injected async #PF in interrupt disabled region\n");
259 
260 	if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
261 		if (unlikely(!(user_mode(regs))))
262 			panic("Host injected async #PF in kernel mode\n");
263 		/* Page is swapped out by the host. */
264 		kvm_async_pf_task_wait_schedule(token);
265 	} else {
266 		WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
267 	}
268 
269 	instrumentation_end();
270 	irqentry_exit(regs, state);
271 	return true;
272 }
273 
274 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
275 {
276 	struct pt_regs *old_regs = set_irq_regs(regs);
277 	u32 token;
278 
279 	ack_APIC_irq();
280 
281 	inc_irq_stat(irq_hv_callback_count);
282 
283 	if (__this_cpu_read(apf_reason.enabled)) {
284 		token = __this_cpu_read(apf_reason.token);
285 		kvm_async_pf_task_wake(token);
286 		__this_cpu_write(apf_reason.token, 0);
287 		wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
288 	}
289 
290 	set_irq_regs(old_regs);
291 }
292 
293 static void __init paravirt_ops_setup(void)
294 {
295 	pv_info.name = "KVM";
296 
297 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
298 		pv_ops.cpu.io_delay = kvm_io_delay;
299 
300 #ifdef CONFIG_X86_IO_APIC
301 	no_timer_check = 1;
302 #endif
303 }
304 
305 static void kvm_register_steal_time(void)
306 {
307 	int cpu = smp_processor_id();
308 	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
309 
310 	if (!has_steal_clock)
311 		return;
312 
313 	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
314 	pr_info("stealtime: cpu %d, msr %llx\n", cpu,
315 		(unsigned long long) slow_virt_to_phys(st));
316 }
317 
318 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
319 
320 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
321 {
322 	/**
323 	 * This relies on __test_and_clear_bit to modify the memory
324 	 * in a way that is atomic with respect to the local CPU.
325 	 * The hypervisor only accesses this memory from the local CPU so
326 	 * there's no need for lock or memory barriers.
327 	 * An optimization barrier is implied in apic write.
328 	 */
329 	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
330 		return;
331 	apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
332 }
333 
334 static void kvm_guest_cpu_init(void)
335 {
336 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
337 		u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
338 
339 		WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
340 
341 		pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
342 		pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
343 
344 		if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
345 			pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
346 
347 		wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
348 
349 		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
350 		__this_cpu_write(apf_reason.enabled, 1);
351 		pr_info("setup async PF for cpu %d\n", smp_processor_id());
352 	}
353 
354 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
355 		unsigned long pa;
356 
357 		/* Size alignment is implied but just to make it explicit. */
358 		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
359 		__this_cpu_write(kvm_apic_eoi, 0);
360 		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
361 			| KVM_MSR_ENABLED;
362 		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
363 	}
364 
365 	if (has_steal_clock)
366 		kvm_register_steal_time();
367 }
368 
369 static void kvm_pv_disable_apf(void)
370 {
371 	if (!__this_cpu_read(apf_reason.enabled))
372 		return;
373 
374 	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
375 	__this_cpu_write(apf_reason.enabled, 0);
376 
377 	pr_info("disable async PF for cpu %d\n", smp_processor_id());
378 }
379 
380 static void kvm_disable_steal_time(void)
381 {
382 	if (!has_steal_clock)
383 		return;
384 
385 	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
386 }
387 
388 static u64 kvm_steal_clock(int cpu)
389 {
390 	u64 steal;
391 	struct kvm_steal_time *src;
392 	int version;
393 
394 	src = &per_cpu(steal_time, cpu);
395 	do {
396 		version = src->version;
397 		virt_rmb();
398 		steal = src->steal;
399 		virt_rmb();
400 	} while ((version & 1) || (version != src->version));
401 
402 	return steal;
403 }
404 
405 static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
406 {
407 	early_set_memory_decrypted((unsigned long) ptr, size);
408 }
409 
410 /*
411  * Iterate through all possible CPUs and map the memory region pointed
412  * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
413  *
414  * Note: we iterate through all possible CPUs to ensure that CPUs
415  * hotplugged will have their per-cpu variable already mapped as
416  * decrypted.
417  */
418 static void __init sev_map_percpu_data(void)
419 {
420 	int cpu;
421 
422 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
423 		return;
424 
425 	for_each_possible_cpu(cpu) {
426 		__set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
427 		__set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
428 		__set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
429 	}
430 }
431 
432 static void kvm_guest_cpu_offline(bool shutdown)
433 {
434 	kvm_disable_steal_time();
435 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
436 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
437 	kvm_pv_disable_apf();
438 	if (!shutdown)
439 		apf_task_wake_all();
440 	kvmclock_disable();
441 }
442 
443 static int kvm_cpu_online(unsigned int cpu)
444 {
445 	unsigned long flags;
446 
447 	local_irq_save(flags);
448 	kvm_guest_cpu_init();
449 	local_irq_restore(flags);
450 	return 0;
451 }
452 
453 #ifdef CONFIG_SMP
454 
455 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
456 
457 static bool pv_tlb_flush_supported(void)
458 {
459 	return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
460 		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
461 		kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
462 }
463 
464 static bool pv_ipi_supported(void)
465 {
466 	return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
467 }
468 
469 static bool pv_sched_yield_supported(void)
470 {
471 	return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
472 		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
473 	    kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
474 }
475 
476 #define KVM_IPI_CLUSTER_SIZE	(2 * BITS_PER_LONG)
477 
478 static void __send_ipi_mask(const struct cpumask *mask, int vector)
479 {
480 	unsigned long flags;
481 	int cpu, apic_id, icr;
482 	int min = 0, max = 0;
483 #ifdef CONFIG_X86_64
484 	__uint128_t ipi_bitmap = 0;
485 #else
486 	u64 ipi_bitmap = 0;
487 #endif
488 	long ret;
489 
490 	if (cpumask_empty(mask))
491 		return;
492 
493 	local_irq_save(flags);
494 
495 	switch (vector) {
496 	default:
497 		icr = APIC_DM_FIXED | vector;
498 		break;
499 	case NMI_VECTOR:
500 		icr = APIC_DM_NMI;
501 		break;
502 	}
503 
504 	for_each_cpu(cpu, mask) {
505 		apic_id = per_cpu(x86_cpu_to_apicid, cpu);
506 		if (!ipi_bitmap) {
507 			min = max = apic_id;
508 		} else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
509 			ipi_bitmap <<= min - apic_id;
510 			min = apic_id;
511 		} else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) {
512 			max = apic_id < max ? max : apic_id;
513 		} else {
514 			ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
515 				(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
516 			WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
517 				  ret);
518 			min = max = apic_id;
519 			ipi_bitmap = 0;
520 		}
521 		__set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
522 	}
523 
524 	if (ipi_bitmap) {
525 		ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
526 			(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
527 		WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
528 			  ret);
529 	}
530 
531 	local_irq_restore(flags);
532 }
533 
534 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
535 {
536 	__send_ipi_mask(mask, vector);
537 }
538 
539 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
540 {
541 	unsigned int this_cpu = smp_processor_id();
542 	struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
543 	const struct cpumask *local_mask;
544 
545 	cpumask_copy(new_mask, mask);
546 	cpumask_clear_cpu(this_cpu, new_mask);
547 	local_mask = new_mask;
548 	__send_ipi_mask(local_mask, vector);
549 }
550 
551 /*
552  * Set the IPI entry points
553  */
554 static void kvm_setup_pv_ipi(void)
555 {
556 	apic->send_IPI_mask = kvm_send_ipi_mask;
557 	apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
558 	pr_info("setup PV IPIs\n");
559 }
560 
561 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
562 {
563 	int cpu;
564 
565 	native_send_call_func_ipi(mask);
566 
567 	/* Make sure other vCPUs get a chance to run if they need to. */
568 	for_each_cpu(cpu, mask) {
569 		if (vcpu_is_preempted(cpu)) {
570 			kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
571 			break;
572 		}
573 	}
574 }
575 
576 static void kvm_flush_tlb_multi(const struct cpumask *cpumask,
577 			const struct flush_tlb_info *info)
578 {
579 	u8 state;
580 	int cpu;
581 	struct kvm_steal_time *src;
582 	struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
583 
584 	cpumask_copy(flushmask, cpumask);
585 	/*
586 	 * We have to call flush only on online vCPUs. And
587 	 * queue flush_on_enter for pre-empted vCPUs
588 	 */
589 	for_each_cpu(cpu, flushmask) {
590 		/*
591 		 * The local vCPU is never preempted, so we do not explicitly
592 		 * skip check for local vCPU - it will never be cleared from
593 		 * flushmask.
594 		 */
595 		src = &per_cpu(steal_time, cpu);
596 		state = READ_ONCE(src->preempted);
597 		if ((state & KVM_VCPU_PREEMPTED)) {
598 			if (try_cmpxchg(&src->preempted, &state,
599 					state | KVM_VCPU_FLUSH_TLB))
600 				__cpumask_clear_cpu(cpu, flushmask);
601 		}
602 	}
603 
604 	native_flush_tlb_multi(flushmask, info);
605 }
606 
607 static __init int kvm_alloc_cpumask(void)
608 {
609 	int cpu;
610 
611 	if (!kvm_para_available() || nopv)
612 		return 0;
613 
614 	if (pv_tlb_flush_supported() || pv_ipi_supported())
615 		for_each_possible_cpu(cpu) {
616 			zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
617 				GFP_KERNEL, cpu_to_node(cpu));
618 		}
619 
620 	return 0;
621 }
622 arch_initcall(kvm_alloc_cpumask);
623 
624 static void __init kvm_smp_prepare_boot_cpu(void)
625 {
626 	/*
627 	 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
628 	 * shares the guest physical address with the hypervisor.
629 	 */
630 	sev_map_percpu_data();
631 
632 	kvm_guest_cpu_init();
633 	native_smp_prepare_boot_cpu();
634 	kvm_spinlock_init();
635 }
636 
637 static int kvm_cpu_down_prepare(unsigned int cpu)
638 {
639 	unsigned long flags;
640 
641 	local_irq_save(flags);
642 	kvm_guest_cpu_offline(false);
643 	local_irq_restore(flags);
644 	return 0;
645 }
646 
647 #endif
648 
649 static int kvm_suspend(void)
650 {
651 	kvm_guest_cpu_offline(false);
652 
653 	return 0;
654 }
655 
656 static void kvm_resume(void)
657 {
658 	kvm_cpu_online(raw_smp_processor_id());
659 }
660 
661 static struct syscore_ops kvm_syscore_ops = {
662 	.suspend	= kvm_suspend,
663 	.resume		= kvm_resume,
664 };
665 
666 static void kvm_pv_guest_cpu_reboot(void *unused)
667 {
668 	kvm_guest_cpu_offline(true);
669 }
670 
671 static int kvm_pv_reboot_notify(struct notifier_block *nb,
672 				unsigned long code, void *unused)
673 {
674 	if (code == SYS_RESTART)
675 		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
676 	return NOTIFY_DONE;
677 }
678 
679 static struct notifier_block kvm_pv_reboot_nb = {
680 	.notifier_call = kvm_pv_reboot_notify,
681 };
682 
683 /*
684  * After a PV feature is registered, the host will keep writing to the
685  * registered memory location. If the guest happens to shutdown, this memory
686  * won't be valid. In cases like kexec, in which you install a new kernel, this
687  * means a random memory location will be kept being written.
688  */
689 #ifdef CONFIG_KEXEC_CORE
690 static void kvm_crash_shutdown(struct pt_regs *regs)
691 {
692 	kvm_guest_cpu_offline(true);
693 	native_machine_crash_shutdown(regs);
694 }
695 #endif
696 
697 static void __init kvm_guest_init(void)
698 {
699 	int i;
700 
701 	paravirt_ops_setup();
702 	register_reboot_notifier(&kvm_pv_reboot_nb);
703 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
704 		raw_spin_lock_init(&async_pf_sleepers[i].lock);
705 
706 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
707 		has_steal_clock = 1;
708 		static_call_update(pv_steal_clock, kvm_steal_clock);
709 	}
710 
711 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
712 		apic_set_eoi_write(kvm_guest_apic_eoi_write);
713 
714 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
715 		static_branch_enable(&kvm_async_pf_enabled);
716 		alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
717 	}
718 
719 #ifdef CONFIG_SMP
720 	if (pv_tlb_flush_supported()) {
721 		pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi;
722 		pv_ops.mmu.tlb_remove_table = tlb_remove_table;
723 		pr_info("KVM setup pv remote TLB flush\n");
724 	}
725 
726 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
727 	if (pv_sched_yield_supported()) {
728 		smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
729 		pr_info("setup PV sched yield\n");
730 	}
731 	if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
732 				      kvm_cpu_online, kvm_cpu_down_prepare) < 0)
733 		pr_err("failed to install cpu hotplug callbacks\n");
734 #else
735 	sev_map_percpu_data();
736 	kvm_guest_cpu_init();
737 #endif
738 
739 #ifdef CONFIG_KEXEC_CORE
740 	machine_ops.crash_shutdown = kvm_crash_shutdown;
741 #endif
742 
743 	register_syscore_ops(&kvm_syscore_ops);
744 
745 	/*
746 	 * Hard lockup detection is enabled by default. Disable it, as guests
747 	 * can get false positives too easily, for example if the host is
748 	 * overcommitted.
749 	 */
750 	hardlockup_detector_disable();
751 }
752 
753 static noinline uint32_t __kvm_cpuid_base(void)
754 {
755 	if (boot_cpu_data.cpuid_level < 0)
756 		return 0;	/* So we don't blow up on old processors */
757 
758 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
759 		return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
760 
761 	return 0;
762 }
763 
764 static inline uint32_t kvm_cpuid_base(void)
765 {
766 	static int kvm_cpuid_base = -1;
767 
768 	if (kvm_cpuid_base == -1)
769 		kvm_cpuid_base = __kvm_cpuid_base();
770 
771 	return kvm_cpuid_base;
772 }
773 
774 bool kvm_para_available(void)
775 {
776 	return kvm_cpuid_base() != 0;
777 }
778 EXPORT_SYMBOL_GPL(kvm_para_available);
779 
780 unsigned int kvm_arch_para_features(void)
781 {
782 	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
783 }
784 
785 unsigned int kvm_arch_para_hints(void)
786 {
787 	return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
788 }
789 EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
790 
791 static uint32_t __init kvm_detect(void)
792 {
793 	return kvm_cpuid_base();
794 }
795 
796 static void __init kvm_apic_init(void)
797 {
798 #ifdef CONFIG_SMP
799 	if (pv_ipi_supported())
800 		kvm_setup_pv_ipi();
801 #endif
802 }
803 
804 static bool __init kvm_msi_ext_dest_id(void)
805 {
806 	return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID);
807 }
808 
809 static void __init kvm_init_platform(void)
810 {
811 	kvmclock_init();
812 	x86_platform.apic_post_init = kvm_apic_init;
813 }
814 
815 #if defined(CONFIG_AMD_MEM_ENCRYPT)
816 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
817 {
818 	/* RAX and CPL are already in the GHCB */
819 	ghcb_set_rbx(ghcb, regs->bx);
820 	ghcb_set_rcx(ghcb, regs->cx);
821 	ghcb_set_rdx(ghcb, regs->dx);
822 	ghcb_set_rsi(ghcb, regs->si);
823 }
824 
825 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
826 {
827 	/* No checking of the return state needed */
828 	return true;
829 }
830 #endif
831 
832 const __initconst struct hypervisor_x86 x86_hyper_kvm = {
833 	.name				= "KVM",
834 	.detect				= kvm_detect,
835 	.type				= X86_HYPER_KVM,
836 	.init.guest_late_init		= kvm_guest_init,
837 	.init.x2apic_available		= kvm_para_available,
838 	.init.msi_ext_dest_id		= kvm_msi_ext_dest_id,
839 	.init.init_platform		= kvm_init_platform,
840 #if defined(CONFIG_AMD_MEM_ENCRYPT)
841 	.runtime.sev_es_hcall_prepare	= kvm_sev_es_hcall_prepare,
842 	.runtime.sev_es_hcall_finish	= kvm_sev_es_hcall_finish,
843 #endif
844 };
845 
846 static __init int activate_jump_labels(void)
847 {
848 	if (has_steal_clock) {
849 		static_key_slow_inc(&paravirt_steal_enabled);
850 		if (steal_acc)
851 			static_key_slow_inc(&paravirt_steal_rq_enabled);
852 	}
853 
854 	return 0;
855 }
856 arch_initcall(activate_jump_labels);
857 
858 #ifdef CONFIG_PARAVIRT_SPINLOCKS
859 
860 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
861 static void kvm_kick_cpu(int cpu)
862 {
863 	int apicid;
864 	unsigned long flags = 0;
865 
866 	apicid = per_cpu(x86_cpu_to_apicid, cpu);
867 	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
868 }
869 
870 #include <asm/qspinlock.h>
871 
872 static void kvm_wait(u8 *ptr, u8 val)
873 {
874 	if (in_nmi())
875 		return;
876 
877 	/*
878 	 * halt until it's our turn and kicked. Note that we do safe halt
879 	 * for irq enabled case to avoid hang when lock info is overwritten
880 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
881 	 */
882 	if (irqs_disabled()) {
883 		if (READ_ONCE(*ptr) == val)
884 			halt();
885 	} else {
886 		local_irq_disable();
887 
888 		/* safe_halt() will enable IRQ */
889 		if (READ_ONCE(*ptr) == val)
890 			safe_halt();
891 		else
892 			local_irq_enable();
893 	}
894 }
895 
896 #ifdef CONFIG_X86_32
897 __visible bool __kvm_vcpu_is_preempted(long cpu)
898 {
899 	struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
900 
901 	return !!(src->preempted & KVM_VCPU_PREEMPTED);
902 }
903 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
904 
905 #else
906 
907 #include <asm/asm-offsets.h>
908 
909 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
910 
911 /*
912  * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
913  * restoring to/from the stack.
914  */
915 asm(
916 ".pushsection .text;"
917 ".global __raw_callee_save___kvm_vcpu_is_preempted;"
918 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
919 "__raw_callee_save___kvm_vcpu_is_preempted:"
920 "movq	__per_cpu_offset(,%rdi,8), %rax;"
921 "cmpb	$0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
922 "setne	%al;"
923 "ret;"
924 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
925 ".popsection");
926 
927 #endif
928 
929 /*
930  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
931  */
932 void __init kvm_spinlock_init(void)
933 {
934 	/*
935 	 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
936 	 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
937 	 * preferred over native qspinlock when vCPU is preempted.
938 	 */
939 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
940 		pr_info("PV spinlocks disabled, no host support\n");
941 		return;
942 	}
943 
944 	/*
945 	 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
946 	 * are available.
947 	 */
948 	if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
949 		pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
950 		goto out;
951 	}
952 
953 	if (num_possible_cpus() == 1) {
954 		pr_info("PV spinlocks disabled, single CPU\n");
955 		goto out;
956 	}
957 
958 	if (nopvspin) {
959 		pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
960 		goto out;
961 	}
962 
963 	pr_info("PV spinlocks enabled\n");
964 
965 	__pv_init_lock_hash();
966 	pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
967 	pv_ops.lock.queued_spin_unlock =
968 		PV_CALLEE_SAVE(__pv_queued_spin_unlock);
969 	pv_ops.lock.wait = kvm_wait;
970 	pv_ops.lock.kick = kvm_kick_cpu;
971 
972 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
973 		pv_ops.lock.vcpu_is_preempted =
974 			PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
975 	}
976 	/*
977 	 * When PV spinlock is enabled which is preferred over
978 	 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
979 	 * Just disable it anyway.
980 	 */
981 out:
982 	static_branch_disable(&virt_spin_lock_key);
983 }
984 
985 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
986 
987 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
988 
989 static void kvm_disable_host_haltpoll(void *i)
990 {
991 	wrmsrl(MSR_KVM_POLL_CONTROL, 0);
992 }
993 
994 static void kvm_enable_host_haltpoll(void *i)
995 {
996 	wrmsrl(MSR_KVM_POLL_CONTROL, 1);
997 }
998 
999 void arch_haltpoll_enable(unsigned int cpu)
1000 {
1001 	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1002 		pr_err_once("host does not support poll control\n");
1003 		pr_err_once("host upgrade recommended\n");
1004 		return;
1005 	}
1006 
1007 	/* Enable guest halt poll disables host halt poll */
1008 	smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1009 }
1010 EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1011 
1012 void arch_haltpoll_disable(unsigned int cpu)
1013 {
1014 	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1015 		return;
1016 
1017 	/* Disable guest halt poll enables host halt poll */
1018 	smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1019 }
1020 EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1021 #endif
1022