1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * KVM paravirt_ops implementation 4 * 5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * Copyright IBM Corporation, 2007 7 * Authors: Anthony Liguori <aliguori@us.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) "kvm-guest: " fmt 11 12 #include <linux/context_tracking.h> 13 #include <linux/init.h> 14 #include <linux/irq.h> 15 #include <linux/kernel.h> 16 #include <linux/kvm_para.h> 17 #include <linux/cpu.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/hardirq.h> 21 #include <linux/notifier.h> 22 #include <linux/reboot.h> 23 #include <linux/hash.h> 24 #include <linux/sched.h> 25 #include <linux/slab.h> 26 #include <linux/kprobes.h> 27 #include <linux/nmi.h> 28 #include <linux/swait.h> 29 #include <asm/timer.h> 30 #include <asm/cpu.h> 31 #include <asm/traps.h> 32 #include <asm/desc.h> 33 #include <asm/tlbflush.h> 34 #include <asm/apic.h> 35 #include <asm/apicdef.h> 36 #include <asm/hypervisor.h> 37 #include <asm/tlb.h> 38 #include <asm/cpuidle_haltpoll.h> 39 40 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled); 41 42 static int kvmapf = 1; 43 44 static int __init parse_no_kvmapf(char *arg) 45 { 46 kvmapf = 0; 47 return 0; 48 } 49 50 early_param("no-kvmapf", parse_no_kvmapf); 51 52 static int steal_acc = 1; 53 static int __init parse_no_stealacc(char *arg) 54 { 55 steal_acc = 0; 56 return 0; 57 } 58 59 early_param("no-steal-acc", parse_no_stealacc); 60 61 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64); 62 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible; 63 static int has_steal_clock = 0; 64 65 /* 66 * No need for any "IO delay" on KVM 67 */ 68 static void kvm_io_delay(void) 69 { 70 } 71 72 #define KVM_TASK_SLEEP_HASHBITS 8 73 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS) 74 75 struct kvm_task_sleep_node { 76 struct hlist_node link; 77 struct swait_queue_head wq; 78 u32 token; 79 int cpu; 80 }; 81 82 static struct kvm_task_sleep_head { 83 raw_spinlock_t lock; 84 struct hlist_head list; 85 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE]; 86 87 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b, 88 u32 token) 89 { 90 struct hlist_node *p; 91 92 hlist_for_each(p, &b->list) { 93 struct kvm_task_sleep_node *n = 94 hlist_entry(p, typeof(*n), link); 95 if (n->token == token) 96 return n; 97 } 98 99 return NULL; 100 } 101 102 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n) 103 { 104 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); 105 struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; 106 struct kvm_task_sleep_node *e; 107 108 raw_spin_lock(&b->lock); 109 e = _find_apf_task(b, token); 110 if (e) { 111 /* dummy entry exist -> wake up was delivered ahead of PF */ 112 hlist_del(&e->link); 113 raw_spin_unlock(&b->lock); 114 kfree(e); 115 return false; 116 } 117 118 n->token = token; 119 n->cpu = smp_processor_id(); 120 init_swait_queue_head(&n->wq); 121 hlist_add_head(&n->link, &b->list); 122 raw_spin_unlock(&b->lock); 123 return true; 124 } 125 126 /* 127 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled 128 * @token: Token to identify the sleep node entry 129 * 130 * Invoked from the async pagefault handling code or from the VM exit page 131 * fault handler. In both cases RCU is watching. 132 */ 133 void kvm_async_pf_task_wait_schedule(u32 token) 134 { 135 struct kvm_task_sleep_node n; 136 DECLARE_SWAITQUEUE(wait); 137 138 lockdep_assert_irqs_disabled(); 139 140 if (!kvm_async_pf_queue_task(token, &n)) 141 return; 142 143 for (;;) { 144 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE); 145 if (hlist_unhashed(&n.link)) 146 break; 147 148 local_irq_enable(); 149 schedule(); 150 local_irq_disable(); 151 } 152 finish_swait(&n.wq, &wait); 153 } 154 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule); 155 156 static void apf_task_wake_one(struct kvm_task_sleep_node *n) 157 { 158 hlist_del_init(&n->link); 159 if (swq_has_sleeper(&n->wq)) 160 swake_up_one(&n->wq); 161 } 162 163 static void apf_task_wake_all(void) 164 { 165 int i; 166 167 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) { 168 struct kvm_task_sleep_head *b = &async_pf_sleepers[i]; 169 struct kvm_task_sleep_node *n; 170 struct hlist_node *p, *next; 171 172 raw_spin_lock(&b->lock); 173 hlist_for_each_safe(p, next, &b->list) { 174 n = hlist_entry(p, typeof(*n), link); 175 if (n->cpu == smp_processor_id()) 176 apf_task_wake_one(n); 177 } 178 raw_spin_unlock(&b->lock); 179 } 180 } 181 182 void kvm_async_pf_task_wake(u32 token) 183 { 184 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); 185 struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; 186 struct kvm_task_sleep_node *n; 187 188 if (token == ~0) { 189 apf_task_wake_all(); 190 return; 191 } 192 193 again: 194 raw_spin_lock(&b->lock); 195 n = _find_apf_task(b, token); 196 if (!n) { 197 /* 198 * async PF was not yet handled. 199 * Add dummy entry for the token. 200 */ 201 n = kzalloc(sizeof(*n), GFP_ATOMIC); 202 if (!n) { 203 /* 204 * Allocation failed! Busy wait while other cpu 205 * handles async PF. 206 */ 207 raw_spin_unlock(&b->lock); 208 cpu_relax(); 209 goto again; 210 } 211 n->token = token; 212 n->cpu = smp_processor_id(); 213 init_swait_queue_head(&n->wq); 214 hlist_add_head(&n->link, &b->list); 215 } else { 216 apf_task_wake_one(n); 217 } 218 raw_spin_unlock(&b->lock); 219 return; 220 } 221 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake); 222 223 noinstr u32 kvm_read_and_reset_apf_flags(void) 224 { 225 u32 flags = 0; 226 227 if (__this_cpu_read(apf_reason.enabled)) { 228 flags = __this_cpu_read(apf_reason.flags); 229 __this_cpu_write(apf_reason.flags, 0); 230 } 231 232 return flags; 233 } 234 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags); 235 236 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token) 237 { 238 u32 flags = kvm_read_and_reset_apf_flags(); 239 irqentry_state_t state; 240 241 if (!flags) 242 return false; 243 244 state = irqentry_enter(regs); 245 instrumentation_begin(); 246 247 /* 248 * If the host managed to inject an async #PF into an interrupt 249 * disabled region, then die hard as this is not going to end well 250 * and the host side is seriously broken. 251 */ 252 if (unlikely(!(regs->flags & X86_EFLAGS_IF))) 253 panic("Host injected async #PF in interrupt disabled region\n"); 254 255 if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 256 if (unlikely(!(user_mode(regs)))) 257 panic("Host injected async #PF in kernel mode\n"); 258 /* Page is swapped out by the host. */ 259 kvm_async_pf_task_wait_schedule(token); 260 } else { 261 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags); 262 } 263 264 instrumentation_end(); 265 irqentry_exit(regs, state); 266 return true; 267 } 268 269 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt) 270 { 271 struct pt_regs *old_regs = set_irq_regs(regs); 272 u32 token; 273 274 ack_APIC_irq(); 275 276 inc_irq_stat(irq_hv_callback_count); 277 278 if (__this_cpu_read(apf_reason.enabled)) { 279 token = __this_cpu_read(apf_reason.token); 280 kvm_async_pf_task_wake(token); 281 __this_cpu_write(apf_reason.token, 0); 282 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1); 283 } 284 285 set_irq_regs(old_regs); 286 } 287 288 static void __init paravirt_ops_setup(void) 289 { 290 pv_info.name = "KVM"; 291 292 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) 293 pv_ops.cpu.io_delay = kvm_io_delay; 294 295 #ifdef CONFIG_X86_IO_APIC 296 no_timer_check = 1; 297 #endif 298 } 299 300 static void kvm_register_steal_time(void) 301 { 302 int cpu = smp_processor_id(); 303 struct kvm_steal_time *st = &per_cpu(steal_time, cpu); 304 305 if (!has_steal_clock) 306 return; 307 308 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED)); 309 pr_info("stealtime: cpu %d, msr %llx\n", cpu, 310 (unsigned long long) slow_virt_to_phys(st)); 311 } 312 313 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED; 314 315 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val) 316 { 317 /** 318 * This relies on __test_and_clear_bit to modify the memory 319 * in a way that is atomic with respect to the local CPU. 320 * The hypervisor only accesses this memory from the local CPU so 321 * there's no need for lock or memory barriers. 322 * An optimization barrier is implied in apic write. 323 */ 324 if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi))) 325 return; 326 apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK); 327 } 328 329 static void kvm_guest_cpu_init(void) 330 { 331 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { 332 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); 333 334 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled)); 335 336 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason)); 337 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 338 339 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT)) 340 pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 341 342 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR); 343 344 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa); 345 __this_cpu_write(apf_reason.enabled, 1); 346 pr_info("KVM setup async PF for cpu %d\n", smp_processor_id()); 347 } 348 349 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) { 350 unsigned long pa; 351 352 /* Size alignment is implied but just to make it explicit. */ 353 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4); 354 __this_cpu_write(kvm_apic_eoi, 0); 355 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi)) 356 | KVM_MSR_ENABLED; 357 wrmsrl(MSR_KVM_PV_EOI_EN, pa); 358 } 359 360 if (has_steal_clock) 361 kvm_register_steal_time(); 362 } 363 364 static void kvm_pv_disable_apf(void) 365 { 366 if (!__this_cpu_read(apf_reason.enabled)) 367 return; 368 369 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0); 370 __this_cpu_write(apf_reason.enabled, 0); 371 372 pr_info("Unregister pv shared memory for cpu %d\n", smp_processor_id()); 373 } 374 375 static void kvm_pv_guest_cpu_reboot(void *unused) 376 { 377 /* 378 * We disable PV EOI before we load a new kernel by kexec, 379 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory. 380 * New kernel can re-enable when it boots. 381 */ 382 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 383 wrmsrl(MSR_KVM_PV_EOI_EN, 0); 384 kvm_pv_disable_apf(); 385 kvm_disable_steal_time(); 386 } 387 388 static int kvm_pv_reboot_notify(struct notifier_block *nb, 389 unsigned long code, void *unused) 390 { 391 if (code == SYS_RESTART) 392 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1); 393 return NOTIFY_DONE; 394 } 395 396 static struct notifier_block kvm_pv_reboot_nb = { 397 .notifier_call = kvm_pv_reboot_notify, 398 }; 399 400 static u64 kvm_steal_clock(int cpu) 401 { 402 u64 steal; 403 struct kvm_steal_time *src; 404 int version; 405 406 src = &per_cpu(steal_time, cpu); 407 do { 408 version = src->version; 409 virt_rmb(); 410 steal = src->steal; 411 virt_rmb(); 412 } while ((version & 1) || (version != src->version)); 413 414 return steal; 415 } 416 417 void kvm_disable_steal_time(void) 418 { 419 if (!has_steal_clock) 420 return; 421 422 wrmsr(MSR_KVM_STEAL_TIME, 0, 0); 423 } 424 425 static inline void __set_percpu_decrypted(void *ptr, unsigned long size) 426 { 427 early_set_memory_decrypted((unsigned long) ptr, size); 428 } 429 430 /* 431 * Iterate through all possible CPUs and map the memory region pointed 432 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once. 433 * 434 * Note: we iterate through all possible CPUs to ensure that CPUs 435 * hotplugged will have their per-cpu variable already mapped as 436 * decrypted. 437 */ 438 static void __init sev_map_percpu_data(void) 439 { 440 int cpu; 441 442 if (!sev_active()) 443 return; 444 445 for_each_possible_cpu(cpu) { 446 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason)); 447 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time)); 448 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi)); 449 } 450 } 451 452 static bool pv_tlb_flush_supported(void) 453 { 454 return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) && 455 !kvm_para_has_hint(KVM_HINTS_REALTIME) && 456 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)); 457 } 458 459 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask); 460 461 #ifdef CONFIG_SMP 462 463 static bool pv_ipi_supported(void) 464 { 465 return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI); 466 } 467 468 static bool pv_sched_yield_supported(void) 469 { 470 return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) && 471 !kvm_para_has_hint(KVM_HINTS_REALTIME) && 472 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)); 473 } 474 475 #define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG) 476 477 static void __send_ipi_mask(const struct cpumask *mask, int vector) 478 { 479 unsigned long flags; 480 int cpu, apic_id, icr; 481 int min = 0, max = 0; 482 #ifdef CONFIG_X86_64 483 __uint128_t ipi_bitmap = 0; 484 #else 485 u64 ipi_bitmap = 0; 486 #endif 487 long ret; 488 489 if (cpumask_empty(mask)) 490 return; 491 492 local_irq_save(flags); 493 494 switch (vector) { 495 default: 496 icr = APIC_DM_FIXED | vector; 497 break; 498 case NMI_VECTOR: 499 icr = APIC_DM_NMI; 500 break; 501 } 502 503 for_each_cpu(cpu, mask) { 504 apic_id = per_cpu(x86_cpu_to_apicid, cpu); 505 if (!ipi_bitmap) { 506 min = max = apic_id; 507 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) { 508 ipi_bitmap <<= min - apic_id; 509 min = apic_id; 510 } else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) { 511 max = apic_id < max ? max : apic_id; 512 } else { 513 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, 514 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); 515 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", 516 ret); 517 min = max = apic_id; 518 ipi_bitmap = 0; 519 } 520 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap); 521 } 522 523 if (ipi_bitmap) { 524 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap, 525 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr); 526 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld", 527 ret); 528 } 529 530 local_irq_restore(flags); 531 } 532 533 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector) 534 { 535 __send_ipi_mask(mask, vector); 536 } 537 538 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector) 539 { 540 unsigned int this_cpu = smp_processor_id(); 541 struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); 542 const struct cpumask *local_mask; 543 544 cpumask_copy(new_mask, mask); 545 cpumask_clear_cpu(this_cpu, new_mask); 546 local_mask = new_mask; 547 __send_ipi_mask(local_mask, vector); 548 } 549 550 /* 551 * Set the IPI entry points 552 */ 553 static void kvm_setup_pv_ipi(void) 554 { 555 apic->send_IPI_mask = kvm_send_ipi_mask; 556 apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself; 557 pr_info("setup PV IPIs\n"); 558 } 559 560 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask) 561 { 562 int cpu; 563 564 native_send_call_func_ipi(mask); 565 566 /* Make sure other vCPUs get a chance to run if they need to. */ 567 for_each_cpu(cpu, mask) { 568 if (vcpu_is_preempted(cpu)) { 569 kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu)); 570 break; 571 } 572 } 573 } 574 575 static void __init kvm_smp_prepare_boot_cpu(void) 576 { 577 /* 578 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init() 579 * shares the guest physical address with the hypervisor. 580 */ 581 sev_map_percpu_data(); 582 583 kvm_guest_cpu_init(); 584 native_smp_prepare_boot_cpu(); 585 kvm_spinlock_init(); 586 } 587 588 static void kvm_guest_cpu_offline(void) 589 { 590 kvm_disable_steal_time(); 591 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 592 wrmsrl(MSR_KVM_PV_EOI_EN, 0); 593 kvm_pv_disable_apf(); 594 apf_task_wake_all(); 595 } 596 597 static int kvm_cpu_online(unsigned int cpu) 598 { 599 local_irq_disable(); 600 kvm_guest_cpu_init(); 601 local_irq_enable(); 602 return 0; 603 } 604 605 static int kvm_cpu_down_prepare(unsigned int cpu) 606 { 607 local_irq_disable(); 608 kvm_guest_cpu_offline(); 609 local_irq_enable(); 610 return 0; 611 } 612 #endif 613 614 static void kvm_flush_tlb_others(const struct cpumask *cpumask, 615 const struct flush_tlb_info *info) 616 { 617 u8 state; 618 int cpu; 619 struct kvm_steal_time *src; 620 struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask); 621 622 cpumask_copy(flushmask, cpumask); 623 /* 624 * We have to call flush only on online vCPUs. And 625 * queue flush_on_enter for pre-empted vCPUs 626 */ 627 for_each_cpu(cpu, flushmask) { 628 src = &per_cpu(steal_time, cpu); 629 state = READ_ONCE(src->preempted); 630 if ((state & KVM_VCPU_PREEMPTED)) { 631 if (try_cmpxchg(&src->preempted, &state, 632 state | KVM_VCPU_FLUSH_TLB)) 633 __cpumask_clear_cpu(cpu, flushmask); 634 } 635 } 636 637 native_flush_tlb_others(flushmask, info); 638 } 639 640 static void __init kvm_guest_init(void) 641 { 642 int i; 643 644 paravirt_ops_setup(); 645 register_reboot_notifier(&kvm_pv_reboot_nb); 646 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) 647 raw_spin_lock_init(&async_pf_sleepers[i].lock); 648 649 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { 650 has_steal_clock = 1; 651 pv_ops.time.steal_clock = kvm_steal_clock; 652 } 653 654 if (pv_tlb_flush_supported()) { 655 pv_ops.mmu.flush_tlb_others = kvm_flush_tlb_others; 656 pv_ops.mmu.tlb_remove_table = tlb_remove_table; 657 pr_info("KVM setup pv remote TLB flush\n"); 658 } 659 660 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 661 apic_set_eoi_write(kvm_guest_apic_eoi_write); 662 663 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) { 664 static_branch_enable(&kvm_async_pf_enabled); 665 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt); 666 } 667 668 #ifdef CONFIG_SMP 669 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; 670 if (pv_sched_yield_supported()) { 671 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi; 672 pr_info("setup PV sched yield\n"); 673 } 674 if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online", 675 kvm_cpu_online, kvm_cpu_down_prepare) < 0) 676 pr_err("failed to install cpu hotplug callbacks\n"); 677 #else 678 sev_map_percpu_data(); 679 kvm_guest_cpu_init(); 680 #endif 681 682 /* 683 * Hard lockup detection is enabled by default. Disable it, as guests 684 * can get false positives too easily, for example if the host is 685 * overcommitted. 686 */ 687 hardlockup_detector_disable(); 688 } 689 690 static noinline uint32_t __kvm_cpuid_base(void) 691 { 692 if (boot_cpu_data.cpuid_level < 0) 693 return 0; /* So we don't blow up on old processors */ 694 695 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 696 return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0); 697 698 return 0; 699 } 700 701 static inline uint32_t kvm_cpuid_base(void) 702 { 703 static int kvm_cpuid_base = -1; 704 705 if (kvm_cpuid_base == -1) 706 kvm_cpuid_base = __kvm_cpuid_base(); 707 708 return kvm_cpuid_base; 709 } 710 711 bool kvm_para_available(void) 712 { 713 return kvm_cpuid_base() != 0; 714 } 715 EXPORT_SYMBOL_GPL(kvm_para_available); 716 717 unsigned int kvm_arch_para_features(void) 718 { 719 return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES); 720 } 721 722 unsigned int kvm_arch_para_hints(void) 723 { 724 return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES); 725 } 726 EXPORT_SYMBOL_GPL(kvm_arch_para_hints); 727 728 static uint32_t __init kvm_detect(void) 729 { 730 return kvm_cpuid_base(); 731 } 732 733 static void __init kvm_apic_init(void) 734 { 735 #if defined(CONFIG_SMP) 736 if (pv_ipi_supported()) 737 kvm_setup_pv_ipi(); 738 #endif 739 } 740 741 static void __init kvm_init_platform(void) 742 { 743 kvmclock_init(); 744 x86_platform.apic_post_init = kvm_apic_init; 745 } 746 747 const __initconst struct hypervisor_x86 x86_hyper_kvm = { 748 .name = "KVM", 749 .detect = kvm_detect, 750 .type = X86_HYPER_KVM, 751 .init.guest_late_init = kvm_guest_init, 752 .init.x2apic_available = kvm_para_available, 753 .init.init_platform = kvm_init_platform, 754 }; 755 756 static __init int activate_jump_labels(void) 757 { 758 if (has_steal_clock) { 759 static_key_slow_inc(¶virt_steal_enabled); 760 if (steal_acc) 761 static_key_slow_inc(¶virt_steal_rq_enabled); 762 } 763 764 return 0; 765 } 766 arch_initcall(activate_jump_labels); 767 768 static __init int kvm_alloc_cpumask(void) 769 { 770 int cpu; 771 bool alloc = false; 772 773 if (!kvm_para_available() || nopv) 774 return 0; 775 776 if (pv_tlb_flush_supported()) 777 alloc = true; 778 779 #if defined(CONFIG_SMP) 780 if (pv_ipi_supported()) 781 alloc = true; 782 #endif 783 784 if (alloc) 785 for_each_possible_cpu(cpu) { 786 zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu), 787 GFP_KERNEL, cpu_to_node(cpu)); 788 } 789 790 return 0; 791 } 792 arch_initcall(kvm_alloc_cpumask); 793 794 #ifdef CONFIG_PARAVIRT_SPINLOCKS 795 796 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */ 797 static void kvm_kick_cpu(int cpu) 798 { 799 int apicid; 800 unsigned long flags = 0; 801 802 apicid = per_cpu(x86_cpu_to_apicid, cpu); 803 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid); 804 } 805 806 #include <asm/qspinlock.h> 807 808 static void kvm_wait(u8 *ptr, u8 val) 809 { 810 unsigned long flags; 811 812 if (in_nmi()) 813 return; 814 815 local_irq_save(flags); 816 817 if (READ_ONCE(*ptr) != val) 818 goto out; 819 820 /* 821 * halt until it's our turn and kicked. Note that we do safe halt 822 * for irq enabled case to avoid hang when lock info is overwritten 823 * in irq spinlock slowpath and no spurious interrupt occur to save us. 824 */ 825 if (arch_irqs_disabled_flags(flags)) 826 halt(); 827 else 828 safe_halt(); 829 830 out: 831 local_irq_restore(flags); 832 } 833 834 #ifdef CONFIG_X86_32 835 __visible bool __kvm_vcpu_is_preempted(long cpu) 836 { 837 struct kvm_steal_time *src = &per_cpu(steal_time, cpu); 838 839 return !!(src->preempted & KVM_VCPU_PREEMPTED); 840 } 841 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted); 842 843 #else 844 845 #include <asm/asm-offsets.h> 846 847 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long); 848 849 /* 850 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and 851 * restoring to/from the stack. 852 */ 853 asm( 854 ".pushsection .text;" 855 ".global __raw_callee_save___kvm_vcpu_is_preempted;" 856 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;" 857 "__raw_callee_save___kvm_vcpu_is_preempted:" 858 "movq __per_cpu_offset(,%rdi,8), %rax;" 859 "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);" 860 "setne %al;" 861 "ret;" 862 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;" 863 ".popsection"); 864 865 #endif 866 867 /* 868 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present. 869 */ 870 void __init kvm_spinlock_init(void) 871 { 872 /* 873 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an 874 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is 875 * preferred over native qspinlock when vCPU is preempted. 876 */ 877 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) { 878 pr_info("PV spinlocks disabled, no host support\n"); 879 return; 880 } 881 882 /* 883 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs 884 * are available. 885 */ 886 if (kvm_para_has_hint(KVM_HINTS_REALTIME)) { 887 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n"); 888 goto out; 889 } 890 891 if (num_possible_cpus() == 1) { 892 pr_info("PV spinlocks disabled, single CPU\n"); 893 goto out; 894 } 895 896 if (nopvspin) { 897 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n"); 898 goto out; 899 } 900 901 pr_info("PV spinlocks enabled\n"); 902 903 __pv_init_lock_hash(); 904 pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath; 905 pv_ops.lock.queued_spin_unlock = 906 PV_CALLEE_SAVE(__pv_queued_spin_unlock); 907 pv_ops.lock.wait = kvm_wait; 908 pv_ops.lock.kick = kvm_kick_cpu; 909 910 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { 911 pv_ops.lock.vcpu_is_preempted = 912 PV_CALLEE_SAVE(__kvm_vcpu_is_preempted); 913 } 914 /* 915 * When PV spinlock is enabled which is preferred over 916 * virt_spin_lock(), virt_spin_lock_key's value is meaningless. 917 * Just disable it anyway. 918 */ 919 out: 920 static_branch_disable(&virt_spin_lock_key); 921 } 922 923 #endif /* CONFIG_PARAVIRT_SPINLOCKS */ 924 925 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL 926 927 static void kvm_disable_host_haltpoll(void *i) 928 { 929 wrmsrl(MSR_KVM_POLL_CONTROL, 0); 930 } 931 932 static void kvm_enable_host_haltpoll(void *i) 933 { 934 wrmsrl(MSR_KVM_POLL_CONTROL, 1); 935 } 936 937 void arch_haltpoll_enable(unsigned int cpu) 938 { 939 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) { 940 pr_err_once("host does not support poll control\n"); 941 pr_err_once("host upgrade recommended\n"); 942 return; 943 } 944 945 /* Enable guest halt poll disables host halt poll */ 946 smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1); 947 } 948 EXPORT_SYMBOL_GPL(arch_haltpoll_enable); 949 950 void arch_haltpoll_disable(unsigned int cpu) 951 { 952 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) 953 return; 954 955 /* Enable guest halt poll disables host halt poll */ 956 smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1); 957 } 958 EXPORT_SYMBOL_GPL(arch_haltpoll_disable); 959 #endif 960