1 /* 2 * KVM paravirt_ops implementation 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 17 * 18 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 19 * Copyright IBM Corporation, 2007 20 * Authors: Anthony Liguori <aliguori@us.ibm.com> 21 */ 22 23 #include <linux/context_tracking.h> 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/kvm_para.h> 27 #include <linux/cpu.h> 28 #include <linux/mm.h> 29 #include <linux/highmem.h> 30 #include <linux/hardirq.h> 31 #include <linux/notifier.h> 32 #include <linux/reboot.h> 33 #include <linux/hash.h> 34 #include <linux/sched.h> 35 #include <linux/slab.h> 36 #include <linux/kprobes.h> 37 #include <linux/debugfs.h> 38 #include <asm/timer.h> 39 #include <asm/cpu.h> 40 #include <asm/traps.h> 41 #include <asm/desc.h> 42 #include <asm/tlbflush.h> 43 #include <asm/idle.h> 44 #include <asm/apic.h> 45 #include <asm/apicdef.h> 46 #include <asm/hypervisor.h> 47 #include <asm/kvm_guest.h> 48 49 static int kvmapf = 1; 50 51 static int parse_no_kvmapf(char *arg) 52 { 53 kvmapf = 0; 54 return 0; 55 } 56 57 early_param("no-kvmapf", parse_no_kvmapf); 58 59 static int steal_acc = 1; 60 static int parse_no_stealacc(char *arg) 61 { 62 steal_acc = 0; 63 return 0; 64 } 65 66 early_param("no-steal-acc", parse_no_stealacc); 67 68 static int kvmclock_vsyscall = 1; 69 static int parse_no_kvmclock_vsyscall(char *arg) 70 { 71 kvmclock_vsyscall = 0; 72 return 0; 73 } 74 75 early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall); 76 77 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64); 78 static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64); 79 static int has_steal_clock = 0; 80 81 /* 82 * No need for any "IO delay" on KVM 83 */ 84 static void kvm_io_delay(void) 85 { 86 } 87 88 #define KVM_TASK_SLEEP_HASHBITS 8 89 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS) 90 91 struct kvm_task_sleep_node { 92 struct hlist_node link; 93 wait_queue_head_t wq; 94 u32 token; 95 int cpu; 96 bool halted; 97 }; 98 99 static struct kvm_task_sleep_head { 100 spinlock_t lock; 101 struct hlist_head list; 102 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE]; 103 104 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b, 105 u32 token) 106 { 107 struct hlist_node *p; 108 109 hlist_for_each(p, &b->list) { 110 struct kvm_task_sleep_node *n = 111 hlist_entry(p, typeof(*n), link); 112 if (n->token == token) 113 return n; 114 } 115 116 return NULL; 117 } 118 119 void kvm_async_pf_task_wait(u32 token) 120 { 121 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); 122 struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; 123 struct kvm_task_sleep_node n, *e; 124 DEFINE_WAIT(wait); 125 126 rcu_irq_enter(); 127 128 spin_lock(&b->lock); 129 e = _find_apf_task(b, token); 130 if (e) { 131 /* dummy entry exist -> wake up was delivered ahead of PF */ 132 hlist_del(&e->link); 133 kfree(e); 134 spin_unlock(&b->lock); 135 136 rcu_irq_exit(); 137 return; 138 } 139 140 n.token = token; 141 n.cpu = smp_processor_id(); 142 n.halted = is_idle_task(current) || preempt_count() > 1; 143 init_waitqueue_head(&n.wq); 144 hlist_add_head(&n.link, &b->list); 145 spin_unlock(&b->lock); 146 147 for (;;) { 148 if (!n.halted) 149 prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE); 150 if (hlist_unhashed(&n.link)) 151 break; 152 153 if (!n.halted) { 154 local_irq_enable(); 155 schedule(); 156 local_irq_disable(); 157 } else { 158 /* 159 * We cannot reschedule. So halt. 160 */ 161 rcu_irq_exit(); 162 native_safe_halt(); 163 rcu_irq_enter(); 164 local_irq_disable(); 165 } 166 } 167 if (!n.halted) 168 finish_wait(&n.wq, &wait); 169 170 rcu_irq_exit(); 171 return; 172 } 173 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait); 174 175 static void apf_task_wake_one(struct kvm_task_sleep_node *n) 176 { 177 hlist_del_init(&n->link); 178 if (n->halted) 179 smp_send_reschedule(n->cpu); 180 else if (waitqueue_active(&n->wq)) 181 wake_up(&n->wq); 182 } 183 184 static void apf_task_wake_all(void) 185 { 186 int i; 187 188 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) { 189 struct hlist_node *p, *next; 190 struct kvm_task_sleep_head *b = &async_pf_sleepers[i]; 191 spin_lock(&b->lock); 192 hlist_for_each_safe(p, next, &b->list) { 193 struct kvm_task_sleep_node *n = 194 hlist_entry(p, typeof(*n), link); 195 if (n->cpu == smp_processor_id()) 196 apf_task_wake_one(n); 197 } 198 spin_unlock(&b->lock); 199 } 200 } 201 202 void kvm_async_pf_task_wake(u32 token) 203 { 204 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS); 205 struct kvm_task_sleep_head *b = &async_pf_sleepers[key]; 206 struct kvm_task_sleep_node *n; 207 208 if (token == ~0) { 209 apf_task_wake_all(); 210 return; 211 } 212 213 again: 214 spin_lock(&b->lock); 215 n = _find_apf_task(b, token); 216 if (!n) { 217 /* 218 * async PF was not yet handled. 219 * Add dummy entry for the token. 220 */ 221 n = kzalloc(sizeof(*n), GFP_ATOMIC); 222 if (!n) { 223 /* 224 * Allocation failed! Busy wait while other cpu 225 * handles async PF. 226 */ 227 spin_unlock(&b->lock); 228 cpu_relax(); 229 goto again; 230 } 231 n->token = token; 232 n->cpu = smp_processor_id(); 233 init_waitqueue_head(&n->wq); 234 hlist_add_head(&n->link, &b->list); 235 } else 236 apf_task_wake_one(n); 237 spin_unlock(&b->lock); 238 return; 239 } 240 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake); 241 242 u32 kvm_read_and_reset_pf_reason(void) 243 { 244 u32 reason = 0; 245 246 if (__get_cpu_var(apf_reason).enabled) { 247 reason = __get_cpu_var(apf_reason).reason; 248 __get_cpu_var(apf_reason).reason = 0; 249 } 250 251 return reason; 252 } 253 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason); 254 255 dotraplinkage void __kprobes 256 do_async_page_fault(struct pt_regs *regs, unsigned long error_code) 257 { 258 enum ctx_state prev_state; 259 260 switch (kvm_read_and_reset_pf_reason()) { 261 default: 262 do_page_fault(regs, error_code); 263 break; 264 case KVM_PV_REASON_PAGE_NOT_PRESENT: 265 /* page is swapped out by the host. */ 266 prev_state = exception_enter(); 267 exit_idle(); 268 kvm_async_pf_task_wait((u32)read_cr2()); 269 exception_exit(prev_state); 270 break; 271 case KVM_PV_REASON_PAGE_READY: 272 rcu_irq_enter(); 273 exit_idle(); 274 kvm_async_pf_task_wake((u32)read_cr2()); 275 rcu_irq_exit(); 276 break; 277 } 278 } 279 280 static void __init paravirt_ops_setup(void) 281 { 282 pv_info.name = "KVM"; 283 pv_info.paravirt_enabled = 1; 284 285 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY)) 286 pv_cpu_ops.io_delay = kvm_io_delay; 287 288 #ifdef CONFIG_X86_IO_APIC 289 no_timer_check = 1; 290 #endif 291 } 292 293 static void kvm_register_steal_time(void) 294 { 295 int cpu = smp_processor_id(); 296 struct kvm_steal_time *st = &per_cpu(steal_time, cpu); 297 298 if (!has_steal_clock) 299 return; 300 301 memset(st, 0, sizeof(*st)); 302 303 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED)); 304 pr_info("kvm-stealtime: cpu %d, msr %llx\n", 305 cpu, (unsigned long long) slow_virt_to_phys(st)); 306 } 307 308 static DEFINE_PER_CPU(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED; 309 310 static void kvm_guest_apic_eoi_write(u32 reg, u32 val) 311 { 312 /** 313 * This relies on __test_and_clear_bit to modify the memory 314 * in a way that is atomic with respect to the local CPU. 315 * The hypervisor only accesses this memory from the local CPU so 316 * there's no need for lock or memory barriers. 317 * An optimization barrier is implied in apic write. 318 */ 319 if (__test_and_clear_bit(KVM_PV_EOI_BIT, &__get_cpu_var(kvm_apic_eoi))) 320 return; 321 apic_write(APIC_EOI, APIC_EOI_ACK); 322 } 323 324 void kvm_guest_cpu_init(void) 325 { 326 if (!kvm_para_available()) 327 return; 328 329 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) { 330 u64 pa = slow_virt_to_phys(&__get_cpu_var(apf_reason)); 331 332 #ifdef CONFIG_PREEMPT 333 pa |= KVM_ASYNC_PF_SEND_ALWAYS; 334 #endif 335 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED); 336 __get_cpu_var(apf_reason).enabled = 1; 337 printk(KERN_INFO"KVM setup async PF for cpu %d\n", 338 smp_processor_id()); 339 } 340 341 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) { 342 unsigned long pa; 343 /* Size alignment is implied but just to make it explicit. */ 344 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4); 345 __get_cpu_var(kvm_apic_eoi) = 0; 346 pa = slow_virt_to_phys(&__get_cpu_var(kvm_apic_eoi)) 347 | KVM_MSR_ENABLED; 348 wrmsrl(MSR_KVM_PV_EOI_EN, pa); 349 } 350 351 if (has_steal_clock) 352 kvm_register_steal_time(); 353 } 354 355 static void kvm_pv_disable_apf(void) 356 { 357 if (!__get_cpu_var(apf_reason).enabled) 358 return; 359 360 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0); 361 __get_cpu_var(apf_reason).enabled = 0; 362 363 printk(KERN_INFO"Unregister pv shared memory for cpu %d\n", 364 smp_processor_id()); 365 } 366 367 static void kvm_pv_guest_cpu_reboot(void *unused) 368 { 369 /* 370 * We disable PV EOI before we load a new kernel by kexec, 371 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory. 372 * New kernel can re-enable when it boots. 373 */ 374 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 375 wrmsrl(MSR_KVM_PV_EOI_EN, 0); 376 kvm_pv_disable_apf(); 377 kvm_disable_steal_time(); 378 } 379 380 static int kvm_pv_reboot_notify(struct notifier_block *nb, 381 unsigned long code, void *unused) 382 { 383 if (code == SYS_RESTART) 384 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1); 385 return NOTIFY_DONE; 386 } 387 388 static struct notifier_block kvm_pv_reboot_nb = { 389 .notifier_call = kvm_pv_reboot_notify, 390 }; 391 392 static u64 kvm_steal_clock(int cpu) 393 { 394 u64 steal; 395 struct kvm_steal_time *src; 396 int version; 397 398 src = &per_cpu(steal_time, cpu); 399 do { 400 version = src->version; 401 rmb(); 402 steal = src->steal; 403 rmb(); 404 } while ((version & 1) || (version != src->version)); 405 406 return steal; 407 } 408 409 void kvm_disable_steal_time(void) 410 { 411 if (!has_steal_clock) 412 return; 413 414 wrmsr(MSR_KVM_STEAL_TIME, 0, 0); 415 } 416 417 #ifdef CONFIG_SMP 418 static void __init kvm_smp_prepare_boot_cpu(void) 419 { 420 WARN_ON(kvm_register_clock("primary cpu clock")); 421 kvm_guest_cpu_init(); 422 native_smp_prepare_boot_cpu(); 423 kvm_spinlock_init(); 424 } 425 426 static void kvm_guest_cpu_online(void *dummy) 427 { 428 kvm_guest_cpu_init(); 429 } 430 431 static void kvm_guest_cpu_offline(void *dummy) 432 { 433 kvm_disable_steal_time(); 434 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 435 wrmsrl(MSR_KVM_PV_EOI_EN, 0); 436 kvm_pv_disable_apf(); 437 apf_task_wake_all(); 438 } 439 440 static int kvm_cpu_notify(struct notifier_block *self, unsigned long action, 441 void *hcpu) 442 { 443 int cpu = (unsigned long)hcpu; 444 switch (action) { 445 case CPU_ONLINE: 446 case CPU_DOWN_FAILED: 447 case CPU_ONLINE_FROZEN: 448 smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0); 449 break; 450 case CPU_DOWN_PREPARE: 451 case CPU_DOWN_PREPARE_FROZEN: 452 smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1); 453 break; 454 default: 455 break; 456 } 457 return NOTIFY_OK; 458 } 459 460 static struct notifier_block kvm_cpu_notifier = { 461 .notifier_call = kvm_cpu_notify, 462 }; 463 #endif 464 465 static void __init kvm_apf_trap_init(void) 466 { 467 set_intr_gate(14, async_page_fault); 468 } 469 470 void __init kvm_guest_init(void) 471 { 472 int i; 473 474 if (!kvm_para_available()) 475 return; 476 477 paravirt_ops_setup(); 478 register_reboot_notifier(&kvm_pv_reboot_nb); 479 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) 480 spin_lock_init(&async_pf_sleepers[i].lock); 481 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF)) 482 x86_init.irqs.trap_init = kvm_apf_trap_init; 483 484 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) { 485 has_steal_clock = 1; 486 pv_time_ops.steal_clock = kvm_steal_clock; 487 } 488 489 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) 490 apic_set_eoi_write(kvm_guest_apic_eoi_write); 491 492 if (kvmclock_vsyscall) 493 kvm_setup_vsyscall_timeinfo(); 494 495 #ifdef CONFIG_SMP 496 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu; 497 register_cpu_notifier(&kvm_cpu_notifier); 498 #else 499 kvm_guest_cpu_init(); 500 #endif 501 } 502 503 static uint32_t __init kvm_detect(void) 504 { 505 return kvm_cpuid_base(); 506 } 507 508 const struct hypervisor_x86 x86_hyper_kvm __refconst = { 509 .name = "KVM", 510 .detect = kvm_detect, 511 .x2apic_available = kvm_para_available, 512 }; 513 EXPORT_SYMBOL_GPL(x86_hyper_kvm); 514 515 static __init int activate_jump_labels(void) 516 { 517 if (has_steal_clock) { 518 static_key_slow_inc(¶virt_steal_enabled); 519 if (steal_acc) 520 static_key_slow_inc(¶virt_steal_rq_enabled); 521 } 522 523 return 0; 524 } 525 arch_initcall(activate_jump_labels); 526 527 #ifdef CONFIG_PARAVIRT_SPINLOCKS 528 529 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */ 530 static void kvm_kick_cpu(int cpu) 531 { 532 int apicid; 533 unsigned long flags = 0; 534 535 apicid = per_cpu(x86_cpu_to_apicid, cpu); 536 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid); 537 } 538 539 enum kvm_contention_stat { 540 TAKEN_SLOW, 541 TAKEN_SLOW_PICKUP, 542 RELEASED_SLOW, 543 RELEASED_SLOW_KICKED, 544 NR_CONTENTION_STATS 545 }; 546 547 #ifdef CONFIG_KVM_DEBUG_FS 548 #define HISTO_BUCKETS 30 549 550 static struct kvm_spinlock_stats 551 { 552 u32 contention_stats[NR_CONTENTION_STATS]; 553 u32 histo_spin_blocked[HISTO_BUCKETS+1]; 554 u64 time_blocked; 555 } spinlock_stats; 556 557 static u8 zero_stats; 558 559 static inline void check_zero(void) 560 { 561 u8 ret; 562 u8 old; 563 564 old = ACCESS_ONCE(zero_stats); 565 if (unlikely(old)) { 566 ret = cmpxchg(&zero_stats, old, 0); 567 /* This ensures only one fellow resets the stat */ 568 if (ret == old) 569 memset(&spinlock_stats, 0, sizeof(spinlock_stats)); 570 } 571 } 572 573 static inline void add_stats(enum kvm_contention_stat var, u32 val) 574 { 575 check_zero(); 576 spinlock_stats.contention_stats[var] += val; 577 } 578 579 580 static inline u64 spin_time_start(void) 581 { 582 return sched_clock(); 583 } 584 585 static void __spin_time_accum(u64 delta, u32 *array) 586 { 587 unsigned index; 588 589 index = ilog2(delta); 590 check_zero(); 591 592 if (index < HISTO_BUCKETS) 593 array[index]++; 594 else 595 array[HISTO_BUCKETS]++; 596 } 597 598 static inline void spin_time_accum_blocked(u64 start) 599 { 600 u32 delta; 601 602 delta = sched_clock() - start; 603 __spin_time_accum(delta, spinlock_stats.histo_spin_blocked); 604 spinlock_stats.time_blocked += delta; 605 } 606 607 static struct dentry *d_spin_debug; 608 static struct dentry *d_kvm_debug; 609 610 struct dentry *kvm_init_debugfs(void) 611 { 612 d_kvm_debug = debugfs_create_dir("kvm-guest", NULL); 613 if (!d_kvm_debug) 614 printk(KERN_WARNING "Could not create 'kvm' debugfs directory\n"); 615 616 return d_kvm_debug; 617 } 618 619 static int __init kvm_spinlock_debugfs(void) 620 { 621 struct dentry *d_kvm; 622 623 d_kvm = kvm_init_debugfs(); 624 if (d_kvm == NULL) 625 return -ENOMEM; 626 627 d_spin_debug = debugfs_create_dir("spinlocks", d_kvm); 628 629 debugfs_create_u8("zero_stats", 0644, d_spin_debug, &zero_stats); 630 631 debugfs_create_u32("taken_slow", 0444, d_spin_debug, 632 &spinlock_stats.contention_stats[TAKEN_SLOW]); 633 debugfs_create_u32("taken_slow_pickup", 0444, d_spin_debug, 634 &spinlock_stats.contention_stats[TAKEN_SLOW_PICKUP]); 635 636 debugfs_create_u32("released_slow", 0444, d_spin_debug, 637 &spinlock_stats.contention_stats[RELEASED_SLOW]); 638 debugfs_create_u32("released_slow_kicked", 0444, d_spin_debug, 639 &spinlock_stats.contention_stats[RELEASED_SLOW_KICKED]); 640 641 debugfs_create_u64("time_blocked", 0444, d_spin_debug, 642 &spinlock_stats.time_blocked); 643 644 debugfs_create_u32_array("histo_blocked", 0444, d_spin_debug, 645 spinlock_stats.histo_spin_blocked, HISTO_BUCKETS + 1); 646 647 return 0; 648 } 649 fs_initcall(kvm_spinlock_debugfs); 650 #else /* !CONFIG_KVM_DEBUG_FS */ 651 static inline void add_stats(enum kvm_contention_stat var, u32 val) 652 { 653 } 654 655 static inline u64 spin_time_start(void) 656 { 657 return 0; 658 } 659 660 static inline void spin_time_accum_blocked(u64 start) 661 { 662 } 663 #endif /* CONFIG_KVM_DEBUG_FS */ 664 665 struct kvm_lock_waiting { 666 struct arch_spinlock *lock; 667 __ticket_t want; 668 }; 669 670 /* cpus 'waiting' on a spinlock to become available */ 671 static cpumask_t waiting_cpus; 672 673 /* Track spinlock on which a cpu is waiting */ 674 static DEFINE_PER_CPU(struct kvm_lock_waiting, klock_waiting); 675 676 static void kvm_lock_spinning(struct arch_spinlock *lock, __ticket_t want) 677 { 678 struct kvm_lock_waiting *w; 679 int cpu; 680 u64 start; 681 unsigned long flags; 682 683 if (in_nmi()) 684 return; 685 686 w = &__get_cpu_var(klock_waiting); 687 cpu = smp_processor_id(); 688 start = spin_time_start(); 689 690 /* 691 * Make sure an interrupt handler can't upset things in a 692 * partially setup state. 693 */ 694 local_irq_save(flags); 695 696 /* 697 * The ordering protocol on this is that the "lock" pointer 698 * may only be set non-NULL if the "want" ticket is correct. 699 * If we're updating "want", we must first clear "lock". 700 */ 701 w->lock = NULL; 702 smp_wmb(); 703 w->want = want; 704 smp_wmb(); 705 w->lock = lock; 706 707 add_stats(TAKEN_SLOW, 1); 708 709 /* 710 * This uses set_bit, which is atomic but we should not rely on its 711 * reordering gurantees. So barrier is needed after this call. 712 */ 713 cpumask_set_cpu(cpu, &waiting_cpus); 714 715 barrier(); 716 717 /* 718 * Mark entry to slowpath before doing the pickup test to make 719 * sure we don't deadlock with an unlocker. 720 */ 721 __ticket_enter_slowpath(lock); 722 723 /* 724 * check again make sure it didn't become free while 725 * we weren't looking. 726 */ 727 if (ACCESS_ONCE(lock->tickets.head) == want) { 728 add_stats(TAKEN_SLOW_PICKUP, 1); 729 goto out; 730 } 731 732 /* 733 * halt until it's our turn and kicked. Note that we do safe halt 734 * for irq enabled case to avoid hang when lock info is overwritten 735 * in irq spinlock slowpath and no spurious interrupt occur to save us. 736 */ 737 if (arch_irqs_disabled_flags(flags)) 738 halt(); 739 else 740 safe_halt(); 741 742 out: 743 cpumask_clear_cpu(cpu, &waiting_cpus); 744 w->lock = NULL; 745 local_irq_restore(flags); 746 spin_time_accum_blocked(start); 747 } 748 PV_CALLEE_SAVE_REGS_THUNK(kvm_lock_spinning); 749 750 /* Kick vcpu waiting on @lock->head to reach value @ticket */ 751 static void kvm_unlock_kick(struct arch_spinlock *lock, __ticket_t ticket) 752 { 753 int cpu; 754 755 add_stats(RELEASED_SLOW, 1); 756 for_each_cpu(cpu, &waiting_cpus) { 757 const struct kvm_lock_waiting *w = &per_cpu(klock_waiting, cpu); 758 if (ACCESS_ONCE(w->lock) == lock && 759 ACCESS_ONCE(w->want) == ticket) { 760 add_stats(RELEASED_SLOW_KICKED, 1); 761 kvm_kick_cpu(cpu); 762 break; 763 } 764 } 765 } 766 767 /* 768 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present. 769 */ 770 void __init kvm_spinlock_init(void) 771 { 772 if (!kvm_para_available()) 773 return; 774 /* Does host kernel support KVM_FEATURE_PV_UNHALT? */ 775 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) 776 return; 777 778 pv_lock_ops.lock_spinning = PV_CALLEE_SAVE(kvm_lock_spinning); 779 pv_lock_ops.unlock_kick = kvm_unlock_kick; 780 } 781 782 static __init int kvm_spinlock_init_jump(void) 783 { 784 if (!kvm_para_available()) 785 return 0; 786 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) 787 return 0; 788 789 static_key_slow_inc(¶virt_ticketlocks_enabled); 790 printk(KERN_INFO "KVM setup paravirtual spinlock\n"); 791 792 return 0; 793 } 794 early_initcall(kvm_spinlock_init_jump); 795 796 #endif /* CONFIG_PARAVIRT_SPINLOCKS */ 797